156
Views
7
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Ab initio study of the structural, electronic, elastic and thermal conductivity properties of SrClF with pressure effects

, , , &
Pages 743-758 | Received 15 Aug 2016, Accepted 23 Dec 2016, Published online: 20 Jan 2017

References

  • R.W.G. Wyckoff, Crystal Structures, Krieger, Malabar, 1986.
  • M.K. Crawford, L.H. Brixner, and K. Somaiah, X-ray excited luminescence spectroscopy of barium fluorohalides, J. Appl. Phys. 66 (1989), pp. 3758–3762.10.1063/1.344037
  • H. von Seggern, T. Voigt, W. Knüpfer, and G. Lange, Physical model of photostimulated luminescence of X-ray irradiated BaFBr: Eu2+, J. Appl. Phys. 64 (1988), pp. 1405–1412.10.1063/1.341838
  • H. Riesen and W.A. Kaczmarek, Efficient X-ray generation of Sm2+ in nanocrystalline BaFCl/Sm3+: A photoluminescent X-ray storage phosphor, Inorg. Chem. 46 (2007), pp. 7235–7237.10.1021/ic062455g
  • M. Sonoda, M. Takano, J. Miyahara, and H. Kato, Computed radiography utilizing scanning laser stimulated luminescence, Radiology 148 (1983), pp. 833–838.10.1148/radiology.148.3.6878707
  • R. Jaaniso and H. Bill, Room temperature persistent spectral hole burning in Sm-doped SrFCl1/2Br 1/2 mixed crystals, Europhys. Lett. 16 (1991), pp. 569–574.10.1209/0295-5075/16/6/010
  • J. Zhang, S. Huang, and J. Yu, High-temperature stability of a spectral hole burnt in Sm-doped SrFCl crystals, Opt. Lett. 17 (1992), pp. 1146–1148.10.1364/OL.17.001146
  • B. Lorenz, Y.R. Shen, and W.B. Holzapfel, Characterization of the new luminescence pressure sensor SrFCl: Sm2+, High Pressure Res 12 (1994), pp. 91–99.10.1080/08957959408203170
  • Y.R. Shen, U. Englisch, L. Chudinovskikh, F. Porsch, R. Haberkorn, H.P. Beck, and W.B. Holzapfel, A structural study on the PbFCl-type compounds MFCl (M=Ba, Sr and Ca) and BaFBr under high pressure, J. Phys.: Condens. Matter 6 (1994), pp. 3197–3206.
  • F. Decremps, M. Fischer, A. Polian, and M. Sieskind, Elasticity of BaFCl single crystal under hydrostatic pressure, Eur. Phys. J. B 5 (1998), pp. 7–13.10.1007/s100510050412
  • F. Decremps, M. Fischer, A. Polian, J.P. Itié, and M. Sieskind, Prediction of cell variations with pressure of ionic layered crystal Application to the matlockite family, Eur. Phys. J. B 9 (1999), pp. 49–57.10.1007/s100510050741
  • M. Sieskind, J.C. Boulou, A. Fettouhi, and D. Ayachour, Infrared modes and dielectric constants of PbFCl-type compounds, Mater. Res. Bull 35 (2000), pp. 1897–1905.10.1016/S0025-5408(00)00412-8
  • M. Sieskind, Y. Dossmann, R. Kuentzler, and J.P. Lambour, Low temperature specific heat of SrFCl, SrFBr, and SrFI, Phys. Status Solidi A 148 (1995), pp. 153–157.10.1002/(ISSN)1521-396X
  • V. Kisand, R. Kink, I. Kink, R. Jaaniso, and I. Martinson, VUV spectroscopy of pure and Sm2+ doped SrFCl crystals, Phys. Status Solidi A 239 (2003), pp. 246–250.10.1002/(ISSN)1521-3951
  • G. Kalpana, B. Palanivel, I.B.S. Shameem Banu, and M. Rajagopalan, Structural and electronic properties of alkaline-earth fluorohalides under pressure, Phys. Rev. B 56 (1997), pp. 3532–3535.10.1103/PhysRevB.56.3532
  • V. Kanchana, G. Vaitheeswaran, and M. Rajagopalan, Electronic structure of ionic PbFCl-type compounds under pressure, J. Phys.: Condens. Matter 15 (2003), pp. 1677–1683.
  • N. Yedukondalu, K. RameshBabu, C. Bheemalingam, D.J. Singh, G. Vaitheeswaran, and V. Kanchana, Electronic structure, optical properties, and bonding in alkaline-earth halofluoride scintillators: BaClF, BaBrF, and BaIF, Phys. Rev. B 83 (2011), p. 165117.1-7.
  • R. Mittal, S.L. Chaplot, A. Sen, S.N. Achary, and A.K. Tyagi, Lattice dynamics and inelastic neutron scattering studies of MFX (M= Ba, Sr, Pb; X= Cl, Br, I), Phys. Rev. B 67 (2003), p. 134303.1-12.
  • P. Labéguerie, F. Pascale, M. Mérawa, C. Zicovich-Wilson, N. Makhouki, and R. Dovesi, Phonon vibrational frequencies and elastic properties of solid SrFCl: An ab initio study, Eur. Phys. J. B 43 (2005), pp. 453–461.10.1140/epjb/e2005-00078-6
  • F.E. haj Hassan, H. Akbarzadeh, S.J. Hashemifar, and A. Mokhtari, Structural and electronic properties of matlockite MFX (M Sr, Ba, Pb; X Cl, Br, I) compounds, J. Phys. Chem. Solids 65 (2004), pp. 1871–1878.10.1016/j.jpcs.2004.07.002
  • A.H. Reshak, Z. Charifi, and H. Baaziz, Optical properties of the alkaline-earth fluorohalides matlockite-type structure SrFX (X=Cl, Br, I) compounds, Phys. B 403 (2008), pp. 711–716.10.1016/j.physb.2007.09.094
  • M. Fischer, A. Polian, and M. Sieskind, Ultrasonic and Brillouin scattering measurements of the elastic constants of SrFCl, J. Phys.: Condens. Matter 6 (1994), pp. 10407–10413.
  • V. Kanchana, N. Yedukondalu, and G. Vaitheeswaran, Structural, elastic, electronic and optical properties of layered alkaline-earth halofluoride scintillators, Philos. Mag. 93 (2013), pp. 3563–3575.10.1080/14786435.2013.815817
  • M.D. Segall, P.L.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne, First-principles simulation: Ideas, illustrations and the CASTEP code, J. Phys.: Condens. Matter 14 (2002), pp. 2717–2744.
  • D.M. Ceperley and B.J. Alder, Ground state of the electron gas by a stochastic method, Phys. Rev. Lett. 45 (1980), pp. 566–569.10.1103/PhysRevLett.45.566
  • J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B 46 (1992), pp. 6671–6687.10.1103/PhysRevB.46.6671
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996), pp. 3865–3868.10.1103/PhysRevLett.77.3865
  • B. Hammer, L.B. Hansen, and J.K. Nørskov, Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals, Phys. Rev. B 59 (1999), pp. 7413–7421.10.1103/PhysRevB.59.7413
  • Z. Wu and R.E. Cohen, A more accurate generalized gradient approximation for solids, Phys. Rev. B 73 (2006), p. 235116.1-6.
  • J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces, Phys. Rev. Lett. 100 (2008), p. 136406.1-4.
  • J.S. Lin, A. Qteish, M.C. Payne, and V. Heine, Optimized and transferable nonlocal separable ab initio pseudopotentials, Phys. Rev. B 47 (1993), pp. 4174–4180.10.1103/PhysRevB.47.4174
  • H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976), pp. 5188–5192.10.1103/PhysRevB.13.5188
  • D.C. Wallace, Thermodynamics of Crystals, Wiley, New York, 1972.
  • P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Wills, and O. Eriksson, Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2, J. Appl. Phys. 84 (1998), pp. 4891–4904.10.1063/1.368733
  • Z. Wu, E. Zhao, H. Xiang, X. Hao, X. Liu, and J. Meng, Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles, Phys. Rev. B 76 (2007), p. 054115.1-15.
  • X. Hao, Y. Xu, Z. Wu, D. Zhou, X. Liu, X. Cao, and J. Meng, Low-compressibility and hard materials ReB2 and WB2: Prediction from first-principles study, Phys. Rev. B 74 (2006), p. 224112.1-5.
  • M. Sauvage, Refinement of the structures of SrFCl and BaFCl, Acta. Crystallogr. B 30 (1974), pp. 2786–2787.10.1107/S0567740874008132
  • F. Birch, Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 K, J. Geophys. Res. 83 (1978), pp. 1257–1268.10.1029/JB083iB03p01257
  • S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philos. Mag. 45 (1954), pp. 823–843.10.1080/14786440808520496
  • J. Haines, J.M. Léger, and G. Bocquillon, Synthesis and design of superhard materials, Annu. Rev. Mater. Res. 31 (2001), pp. 1–23.10.1146/annurev.matsci.31.1.1
  • G.V. Sin’ko and N.A. Smirnov, Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure, J. Phys.: Condens. Matter 14 (2002), pp. 6989–7005.
  • J.F. Nye, Physical Properties of Crystals, Clarendon Press, Oxford, 1985.
  • Z.L. Lv, H.L. Cui, H. Wang, X.H. Li, and G.F. Ji, Electronic and elastic properties of BaLiF 3 with pressure effects: First-principles study, Phys. Status Solidi B 253 (2016), pp. 1788–1794.10.1002/pssb.v253.9
  • K.F. Garrity, First-principles search for n-type oxide, nitride, and sulfide thermoelectrics, Phys. Rev. B 94 (2016), p. 045122.1-11.
  • L. Bjerg, B.B. Iversen, and G.K.H. Madsen, Modeling the thermal conductivities of the zinc antimonides ZnSb and Zn4Sb3, Phys. Rev. B 89 (2014), p. 024304.1-18.
  • D.R. Clarke, Materials selection guidelines for low thermal conductivity thermal barrier coatings, Surf. Coat. Technol. 163–164 (2003), pp. 67–74.10.1016/S0257-8972(02)00593-5
  • G.A. Slack, Nonmetallic crystals with high thermal conductivity, J. Phys. Chem. Solids 34 (1973), pp. 321–335.10.1016/0022-3697(73)90092-9
  • B.D. Sanditov, S.B. Tsydypov, and D.S. Sanditov, Relation between the Grüneisen constant and Poisson’s ratio of vitreous systems, Acoust. Phys. 53 (2007), pp. 594–597.10.1134/S1063771007050090

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.