254
Views
9
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Positron annihilation study of the vacancy clusters in ODS Fe–14Cr alloys

, , &
Pages 833-850 | Received 22 Jan 2016, Accepted 06 Jan 2017, Published online: 19 Jan 2017

References

  • S. Ukai and M. Fujiwara, Perspective of ODS alloys application in nuclear environments, J. Nucl. Mater. 307–311 (2002), pp. 749–757.10.1016/S0022-3115(02)01043-7
  • L.K. Mansur, A.F. Rowcliffe, R.K. Nanstad, S.J. Zinkle, W.R. Corwin, and R.E. Stoller, Materials need for fusion, Generation IV fission reactors and spallation neutron sources - similarities and differences, J. Nucl. Mater. 329–333 (2004), pp. 166–172.10.1016/j.jnucmat.2004.04.016
  • K.L. Murty and I. Charit, Structural materials for Gen-IV nuclear reactors: Challenges and opportunities, J. Nucl. Mater. 383 (2008), pp. 189–195.10.1016/j.jnucmat.2008.08.044
  • G.R. Odette, M.J. Alinger, and B.D. Wirth, Recent developments in irradiation-resistant steels, Annu. Rev. Mater. Res. 38 (2008), pp. 471–503.10.1146/annurev.matsci.38.060407.130315
  • D.J. Larson, P.J. Maziasz, I.S. Kim, and K. Miyahara, Three-dimensional atom probe observation of nanoscale titanium-oxygen clustering in an oxide-dispersion-strengthened Fe-12Cr-3W-0.4Ti + Y2O3 ferritic alloy, Scr. Mater. 44 (2001), pp. 359–364.10.1016/S1359-6462(00)00593-5
  • V. de Castro, E.A. Marquis, S. Lozano-Perez, R. Pareja, and M.L. Jenkins, Stability of nanoscale secondary phases in oxide dispersion strengthened Fe-12Cr alloy, Acta Mater. 59 (2011), pp. 3927–3936.10.1016/j.actamat.2011.03.017
  • M.K. Miller and C.M. Parish, Role of alloying elements in nanostructured ferritic steels, Mater. Sci. Technol. 27 (2011), pp. 729–734; Mater. Sci. Tech-Lond. 27 (2011), pp. 729–734.10.1179/1743284710Y.0000000039
  • A. Hirata, T. Fujita, Y.R. Wen, J.H. Schneibel, C.T. Liu, and M.W. Chen, Atomic structure of nanoclusters in oxide-dispersion-strengthened steels, Nat. Mater. 10 (2011), pp. 922–926.10.1038/nmat3150
  • C.A. Williams, P. Unifantowicz, N. Baluc, G.D.W. Smith, and E.A. Marquis, The formation of oxide particles in oxide-dispersion strengthened ferritic steels during processing, Acta Mater. 61 (2013), pp. 2219–2235.10.1016/j.actamat.2012.12.042
  • C.A. Williams, G.D.W. Smith, and E.A. Marquis, The effect of Ti on the coarsening behaviour of oxygen-rich nanoparticles in oxide-dispersion-strengthened steels after annealing at 1200 C, Scr. Mater. 67 (2012), pp. 108–111.10.1016/j.scriptamat.2012.03.035
  • P. He, M. Klimenkov, R. Lindau, and A. Möslang, Characterization of precipitates in nano structured 14% Cr ODS alloys for fusion application, J. Nucl. Mater. 428 (2012), pp. 131–138.10.1016/j.jnucmat.2011.08.026
  • T. Liu, H. Shen, C. Wang, and W. Chou, Microstructure and mechanical properties of Al containing ODS ferritic alloys by VHP and HIP, Mater. Res. Innov. 18 (2014), pp. S4-410–S4-413.
  • Z.H. Yao, W.H. Xiong, G.P. Zhang, X. Chen, and B. Huang, Effects of Si addition on properties of Fe-Cr-W-Ti-Y2O3 alloy fabricated by mechanical alloying, Mater. Des. 56 (2014), pp. 953–958.10.1016/j.matdes.2013.11.076
  • C.L. Fu, M. Krčmar, G.S. Painter, and X.Q. Chen, Vacancy mechanism of high oxygen solubility and nucleation of stable oxygen-enriched clusters in Fe, Phys. Rev. Lett. 99 (2007), p. 225502-1–225502-4.10.1103/PhysRevLett.99.225502
  • Y. Jiang, J. Smith, and G.R. Odette, Formation of Y-Ti-O nanoclusters in nanostructured ferritic alloys: A first principles studies, Phys. Rev. B 79 (2009), p. 064103.10.1103/PhysRevB.79.064103
  • Y. Ortega, V. de Castro, M.A. Monge, A. Muñoz, T. Leguey, and R. Pareja, Positron annihilation characteristics of ODS and non-ODS EUROFER isochronally annealed, J. Nucl. Mater. 376 (2008), pp. 222–228.10.1016/j.jnucmat.2008.03.005
  • J. Xu, C.T. Liu, M.K. Miller, and H.M. Chen, Nanocluster-associated vacancies in nanocluster-strengthened ferritic steel as seen via positron-lifetime spectroscopy, Phys. Rev. B 79 (2009), p. 020204.10.1103/PhysRevB.79.020204
  • Y. Ortega, M.A. Monge, V. de Castro, A. Muñoz, T. Leguey, and R. Pareja, Strengthening of the RAFMS RUSFER – EK181 through nanostructuring surface layers, J. Nucl. Mater. 386–388 (2009), pp. 462–465.10.1016/j.jnucmat.2008.12.145
  • R. Pareja, P. Parente, A. Muñoz, A. Radulescu, and V. de Castro, Small-angle neutron scattering study of the nano-sized features in an oxide dispersion-strengthened Fe12Cr alloy, Philos. Mag. 95 (2015), pp. 2450–2465.10.1080/14786435.2015.1063789
  • R.W. Siegel, Positron annihilation spectroscopy, Annu. Rev. Mater. Sci. 10 (1980), pp. 393–425.10.1146/annurev.ms.10.080180.002141
  • M.J. Puska and R.M. Nieminen, Theory of positrons in solids and on solid surfaces, Rev. Mod. Phys. 66 (1994), pp. 841–897.10.1103/RevModPhys.66.841
  • P. Asoka-Kumar, M. Alatalo, V.J. Ghosh, A.C. Kruseman, B. Nielsen, and K.G. Lynn, Increased elemental specificity of positron annihilation spectra, Phys. Rev. Lett. 77 (1996), pp. 2097–2100.10.1103/PhysRevLett.77.2097
  • M.A. Auger, T. Leguey, A. Muñoz, M.A. Monge, V. de Castro, P. Fernández, G. Garcés, and R. Pareja, Microstructure and mechanical properties of ultrafine-grained Fe–14Cr and ODS Fe–14Cr model alloys, J. Nucl. Mater. 417 (2011), pp. 213–216.10.1016/j.jnucmat.2010.12.060
  • M.A. Auger, V. de Castro, T. Leguey, M.A. Monge, A. Muñoz, and R. Pareja, Microstructure and tensile properties of oxide dispersion strengthened Fe–14Cr–0.3Y2O3 and Fe–14Cr–2W–0.3 Ti–0.3 Y2O3, J. Nucl. Mater. 442 (2013), pp. S142–S147.10.1016/j.jnucmat.2012.11.001
  • M.A. Auger, V. de Castro, T. Leguey, J. Tarcísio-Costa, M.A. Monge, A. Muñoz, and R. Pareja, Effect of yttrium addition on the microstructure and mechanical properties of ODS RAF steels, J. Nucl. Mater. 455 (2014), pp. 600–604.10.1016/j.jnucmat.2014.08.040
  • P. Kirkegaard, N.J. Pedersen, and M. Eldrup, A computer program for analysing positron lifetime spectra, Risø Report M2740, Risø National Laboratory, Denmark, 1989.
  • A. Vehanen, P. Hautojärvi, J. Johansson, J. Yli-Kauppila, and P. Moser, Vacancies and carbon impurities in α- iron: Electron irradiation, Phys. Rev. B 25 (1982), pp. 762–780.10.1103/PhysRevB.25.762
  • V. Krsjak, Z. Szaraz, and P. Hähner, Positron annihilation lifetime study of oxide dispersion strengthened steels, J. Nucl. Mater. 428 (2012), pp. 160–164.10.1016/j.jnucmat.2011.11.058
  • M.J. Puska and R.M. Nieminen, Defect spectroscopy with positrons: A general calculation method, J. Phys. F: Met. Phys. 13 (1983), pp. 333–346.10.1088/0305-4608/13/2/009
  • H. Ohkubo, Z. Tang, Y. Nagai, M. Hasegawa, T. Tawara, and M. Kiritani, Positron annihilation study of vacancy-type defects in high-speed deformed Ni, Cu and Fe, Mat. Sci. Eng. A-Struct. 350 (2003), pp. 95–101.10.1016/S0921-5093(02)00705-0
  • J. Kuriplach, O. Melikhova, C. Domain, C.S. Becquart, D. Kulikov, L. Malerba, M. Hou, A. Almazouzi, C.A. Duque, and A.L. Morales, Vacancy-solute complexes and their clusters in iron, Appl. Surf. Sci. 252 (2006), pp. 3303–3308.10.1016/j.apsusc.2005.08.075
  • M.A. Auger, T. Leguey, V. de Castro, M.A. Monge, and R. Pareja, Microstructure and mechanical properties of a ODS Fe14Cr model alloy processed by ECAP, Mater. Sci. Tech-Lond. 30 (2014), pp. 1704–1708.10.1179/1743284714Y.0000000554
  • L. Liszkay, C. Corbel, L. Baroux, P. Hautojärvi, M. Bayhan, A.W. Brinkman, and S. Tatarenko, Positron trapping at a small vacancy cluster in thin polycrystalline CdTe films deposited on glass, Appl. Phys. Lett. 64 (1994), pp. 1380–1382.10.1063/1.111994
  • A. Hirata, T. Fujita, C.T. Liu, and M.W. Chen, Characterization of oxide nanoprecipitates in an oxide dispersion strengthened 14YWT steel using aberration-corrected STEM, Acta Mater. 60 (2012), pp. 5686–5696.10.1016/j.actamat.2012.06.042

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.