258
Views
10
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Thermal stability of ultrathin amorphous carbon films synthesized by plasma-enhanced chemical vapor deposition and filtered cathodic vacuum arc

&
Pages 820-832 | Received 31 Aug 2016, Accepted 03 Jan 2017, Published online: 22 Feb 2017

References

  • A. Grill, Diamond-like carbon: State of the art, Diamond Relat. Mater. 8 (1999), pp. 428–434.10.1016/S0925-9635(98)00262-3
  • J. Robertson, Diamond-like amorphous carbon, Mater. Sci. Eng. R: Rep. 37 (2002), pp. 129–281.10.1016/S0927-796X(02)00005-0
  • C. Casiraghi, J. Robertson, and A.C. Ferrari, Diamond-like carbon for data and beer storage, Mater. Today 10(1–2) (2007), pp. 44–53.10.1016/S1369-7021(06)71791-6
  • R. Wood, Future hard disk drive systems, J. Magn. Magn. Mater. 321 (2009), pp. 555–561.10.1016/j.jmmm.2008.07.027
  • Z.Z. Bandić and R.H. Victora, Advances in magnetic data storage technologies, Proc. IEEE 96 (2008), pp. 1749–1753.10.1109/JPROC.2008.2004308
  • Z. Yuan, B. Liu, T. Zhou, C.K. Goh, C.L. Ong, and L. Wang, Perspectives of magnetic recording system at 10 Tb/in2, IEEE Trans. Magn. 45 (2009), pp. 5038–5043.10.1109/TMAG.2009.2029599
  • M.H. Kryder, E.C. Gage, T.W. McDaniel, W.A. Challener, R.E. Rottmayer, G. Ju, Y.-T. Hsia, and M.F. Erden, Heat assisted magnetic recording, Proc. IEEE 96 (2008), pp. 1810–1835.10.1109/JPROC.2008.2004315
  • B.C. Stipe, et al., Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna, Nat. Photonics 4 (2010), pp. 484–488.10.1038/nphoton.2010.90
  • D.S. Grierson, A.V. Sumant, A.R. Konicek, T.A. Friedmann, J.P. Sullivan, and R.W. Carpick, Thermal stability and rehybridization of carbon bonding in tetrahedral amorphous carbon, J. Appl. Phys. 107 (2010), pp. 033523-1–033523-5.10.1063/1.3284087
  • R. Kalish, Y. Lifshitz, K. Nugent, and S. Prawer, Thermal stability and relaxation in diamond-like-carbon. A Raman study of films with different sp3 fractions (ta-C to a-C), Appl. Phys. Lett. 74 (1999), pp. 2936–2938.10.1063/1.123971
  • J. Robertson, Ultrathin carbon coatings for magnetic storage technology, Thin Solid Films 383 (2001), pp. 81–88.10.1016/S0040-6090(00)01786-7
  • K.L. Choy, Chemical vapor deposition of coatings, Prog. Mater. Sci. 48 (2003), pp. 57–170.10.1016/S0079-6425(01)00009-3
  • B. Petereit, P. Siemroth, H.-H. Schneider, and H. Hilgers, High current filtered arc deposition for ultra thin carbon overcoats on magnetic hard disks and read-write heads, Surf. Coat. Technol. 174–175 (2003), pp. 648–650.10.1016/S0257-8972(03)00579-6
  • A. Anders, Cathodic Arcs: From Fractal Spots to Energetic Condensation, Springer Series on Atomic, Optical, and Plasma Physics, Springer-Verlag, New York, NY, 2008.10.1007/978-0-387-79108-1
  • S. Xu, B.K. Tay, H.S. Tan, L. Zhong, Y.Q. Tu, S.R.P. Silva, and W.I. Milne, Properties of carbon ion deposited tetrahedral amorphous carbon films as a function of ion energy, J. Appl. Phys. 79 (1996), pp. 7234–7240.10.1063/1.361440
  • P. Kovarik, E.B.D. Bourdon, and R.H. Prince, Electron-energy-loss characterization of laser-deposited a-C, a-C:H, and diamond films, Phys. Rev. B 48 (1993), pp. 12123–12129.10.1103/PhysRevB.48.12123
  • N. Wang and K. Komvopoulos, The multilayered structure of ultrathin amorphous carbon films synthesized by filtered cathodic vacuum arc deposition, J. Mater. Res. 28 (2013), pp. 2124–2131.10.1557/jmr.2013.206
  • M.P. Siegal, P.N. Provencio, D.R. Tallant, R.L. Simpson, B. Kleinsorge, and W.I. Milne, Bonding topologies in diamondlike amorphous-carbon films, Appl. Phys. Lett. 76 (2000), pp. 2047–2049.10.1063/1.126250
  • C.A. Davis, G.A.J. Amaratunga, and K.M. Knowles, Growth mechanism and cross-sectional structure of tetrahedral amorphous carbon thin films, Phys. Rev. Lett. 80 (1998), pp. 3280–3283.
  • C.A. Davis, K.M. Knowles, and G.A.J. Amaratunga, Cross-sectional structure of tetrahedral amorphous carbon thin films, Surf. Coat. Technol. 76–77 (part 1) (1995), pp. 316–321.10.1016/0257-8972(95)02553-7
  • E. Riedo, F. Comin, J. Chevrier, F. Schmithusen, S. Decossas, and M. Sancrotti, Structural properties and surface morphology of laser-deposited amorphous carbon and carbon nitride films, Surf. Coat. Technol. 125 (2000), pp. 124–128.10.1016/S0257-8972(99)00591-5
  • Y. Lifshitz, S.R. Kasi, J.W. Rabalais, and W. Eckstein, Subplantation model for film growth from hyperthermal species, Phys. Rev. B 41 (1990), pp. 10468–10480.10.1103/PhysRevB.41.10468
  • A.C. Ferrari, Diamond-like carbon for magnetic storage disks, Surf. Coat. Technol. 180–181 (2004), pp. 190–206.10.1016/j.surfcoat.2003.10.146
  • C. Casiraghi, A.C. Ferrari, J. Robertson, R. Ohr, M.v. Gradowski, D. Schneider, and H. Hilgers, Ultra-thin carbon layer for high density magnetic storage devices, Diamond Relat. Mater. 13 (2004), pp. 1480–1485.10.1016/j.diamond.2003.12.018
  • C. Casiraghi, A.C. Ferrari, R. Ohr, D. Chu, and J. Robertson, Surface properties of ultra-thin tetrahedral amorphous carbon films for magnetic storage technology, Diamond Relat. Mater. 13 (2004), pp. 1416–1421.10.1016/j.diamond.2003.10.086
  • M.G. Beghi, A.C. Ferrari, K.B.K. Teo, J. Robertson, C.E. Bottani, A. Libassi, and B.K. Tanner, Bonding and mechanical properties of ultrathin diamond-like carbon films, Appl. Phys. Lett. 81 (2002), pp. 3804–3806.10.1063/1.1510179
  • S. Kundu, N. Dwivedi, N. Satyanarayana, R.J. Yeo, J. Ahner, P.M. Jones, and C.S. Bhatia, Probing the role of carbon microstructure on the thermal stability and performance of ultrathin (<2 nm) overcoats on L10 FePt media for heat-assisted magnetic recording, ACS Appl. Mater. Interf. 7 (2014), pp. 158–165.
  • P.M. Jones, J. Ahner, C.L. Platt, H. Tang, and J. Hohlfeld, Understanding disk carbon loss kinetics for heat assisted magnetic recording, IEEE Trans. Magn. 50 (2014), pp. 3300704-1–3300704-4.
  • F. Rose, N. Wang, R. Smith, Q.-F. Xiao, H. Inaba, T. Matsumura, Y. Saito, H. Matsumoto, Q. Dai, B. Marchon, F. Mangolini, and R.W. Carpick, Complete characterization by Raman spectroscopy of the structural properties of thin hydrogenated diamond-like carbon films exposed to rapid thermal annealing, J. Appl. Phys. 116 (2014), pp. 123516-1–123516-12.10.1063/1.4896838
  • F. Mangolini, F. Rose, J. Hilbert, and R.W. Carpick, Thermally induced evolution of hydrogenated amorphous carbon, Appl. Phys. Lett. 103 (2013), pp. 161605-1–161605-5.10.1063/1.4826100
  • N. Wang, K. Komvopoulos, F. Rose, and B. Marchon, Structural stability of hydrogenated amorphous carbon overcoats used in heat-assisted magnetic recording investigated by rapid thermal annealing, J. Appl. Phys. 113 (2013), pp. 083517-1–083517-7.10.1063/1.4792521
  • A.C. Ferrari, A. Libassi, B.K. Tanner, V. Stolojan, J. Yuan, L.M. Brown, S.E. Rodil, B. Kleinsorge, and J. Robertson, Density, sp3 fraction, and cross-sectional structure of amorphous carbon films determined by x-ray reflectivity and electron energy-loss spectroscopy, Phys. Rev. B 62 (2000), pp. 11089–11103.10.1103/PhysRevB.62.11089
  • C.M. Mate, B.K. Yen, D.C. Miller, M.F. Toney, M. Scarpulla, and J.E. Frommer, New methodologies for measuring film thickness, coverage, and topography, IEEE Trans. Magn. 36 (2000), pp. 110–114.10.1109/20.824434
  • H.-S. Zhang and K. Komvopoulos, Direct-current cathodic vacuum arc system with magnetic-field mechanism for plasma stabilization, Rev. Sci. Instrum. 79 (2008), pp. 073905-1–073905-7.10.1063/1.2949128
  • H.-S. Zhang and K. Komvopoulos, Synthesis of ultrathin carbon films by direct current filtered cathodic vacuum arc, J. Appl. Phys. 105 (2009), pp. 083305-1–083305-7.10.1063/1.3098254
  • D. Wan and K. Komvopoulos, Transmission electron microscopy and electron energy loss spectroscopy analysis of ultrathin amorphous carbon films, J. Mater. Res. 19 (2004), pp. 2131–2136.10.1557/JMR.2004.0272
  • N. Wang and K. Komvopoulos, Incidence angle effect of energetic carbon ions on deposition rate, topography, and structure of ultrathin amorphous carbon films deposited by filtered cathodic vacuum arc, IEEE Trans. Magn. 48 (2012), pp. 2220–2227.10.1109/TMAG.2012.2190295
  • J.J. Cuomo, J.P. Doyle, J. Bruley, and J.C. Liu, Sputter deposition of dense diamond-like carbon films at low temperature, Appl. Phys. Lett. 58 (1991), pp. 466–468.10.1063/1.104609
  • J. Xie and K. Komvopoulos, The role of duty cycle of substrate pulse biasing in filtered cathodic vacuum arc deposition of amorphous carbon films, IEEE Trans. Magn. 51 (2015), pp. 3302009-1–3302009-9.
  • J. Xie and K. Komvopoulos, The effect of Argon ion irradiation on the thickness and structure of ultrathin amorphous carbon films, J. Appl. Phys. 119 (2016), pp. 095304-1–095304-6.10.1063/1.4942440
  • W.A. Challener, C. Peng, A.V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N.J. Gokemeijer, Y.-T. Hsia, G. Ju, R.E. Rottmayer, M.A. Seigler, and E.C. Gage, Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer, Nat. Photonics 3 (2009), pp. 220–224.10.1038/nphoton.2009.26
  • B. Schroeder and G.A. Gibson, Understanding disk failure rates: What does an MTTF of 1,000,000 hours mean to you?, ACM Trans. Storage 3(3) (2007), article No. 8.
  • Y. Ma, X. Chen, and B. Liu, Experimental study of lubricant depletion in heat assisted magnetic recording over the lifetime of the drive, Tribol. Lett. 47 (2012), pp. 175–182.10.1007/s11249-012-9974-z

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.