154
Views
18
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

On solutions of a Boussinesq-type equation with displacement-dependent nonlinearities: the case of biomembranes

, &
Pages 967-987 | Received 22 Nov 2016, Accepted 11 Jan 2017, Published online: 31 Jan 2017

References

  • J. Boussinesq, Théorie de l’intumescence liquide, appelée onde solitaire ou de translation, se propageant dans un canal rectangulaire, C. R. Acad. Sci. 72 (1871), pp. 755–759.
  • L. Rayleigh, On waves, Philos. Mag. 1 (1876), pp. 257–279.
  • C.I. Christov, G.A. Maugin, and A.V. Porubov, On Boussinesq’s paradigm in nonlinear wave propagation, C. R. Méc. 335 (2007), pp. 521–535.
  • G.A. Maugin, On some generalizations of Boussinesq and KdV systems, Proc. Est. Acad. Sci. Phys. Math. 44 (1995), pp. 40–55.
  • G.A. Maugin, Nonlinear Waves in Elastic Crystals, Oxford University Press, Oxford, 1999.
  • A.V. Porubov, Amplification of Nonlinear Strain Waves in Solids, World Scientific, Singapore, 2003.
  • A. Berezovski, J. Engelbrecht, A. Salupere, K. Tamm, T. Peets, and M. Berezovski, Dispersive waves in microstructured solids, Int. J. Solids Struct. 50 (2013), pp. 1981–1990.
  • J. Engelbrecht, K. Tamm, and T. Peets, On mathematical modelling of solitary pulses in cylindrical biomembranes, Biomech. Model. Mechanobiol. 14 (2015), pp. 159–167.
  • J. Engelbrecht, Nonlinear Wave Dynamics. Complexity and Simplicity, Kluwer, Dordrecht, 1997.
  • R.D. Mindlin, Micro-structure in linear elasticity, Arch. Ration. Mech. Anal. 16 (1964), pp. 51–78.
  • G.A. Maugin, Solitons in elastic solids (1938–2010), Mech. Res. Commun. 38 (2011), pp. 341–349.
  • J. Engelbrecht, A. Salupere, and K. Tamm, Waves in microstructured solids and the Boussinesq paradigm, Wave Motion 48 (2011), pp. 717–726.
  • T. Heimburg and A.D. Jackson, On soliton propagation in biomembranes and nerves, Proc. Natl. Acad. Sci. USA 102 (2005), pp. 9790–9795.
  • S.S.L. Andersen, A.D. Jackson, and T. Heimburg, Towards a thermodynamic theory of nerve pulse propagation, Prog. Neurobiol. 88 (2009), pp. 104–13.
  • R. Appali, U. Van Rienen, and T. Heimburg, A comparison of the Hodgkin--Huxley model and the soliton theory for the action potential in nerves, in Advance Planar Lipid Bilayers Liposomes, Vol. 16, Chapter 9, A. Iglic, ed. Academic Press, Cambridge, 2012, pp. 275–299.
  • J.K. Mueller and W.J. Tyler, A quantitative overview of biophysical forces impinging on neural function, Phys. Biol. 11 (2014), p. 051001.
  • N. Zabusky and M. Kruskal, Interaction of “solitons” in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett. 15 (1965), pp. 240–243.
  • P. Drazin and R. Johnson, Solitons: And Introduction, Cambridge University Press, Cambridge, 1989.
  • A. Salupere, P. Peterson, and J. Engelbrecht, Long-time behaviour of soliton ensembles. Part I -- Emergence of ensembles, Chaos Solitons Fractals 14 (2002), pp. 1413–1424.
  • D. Debanne, E. Campanac, A. Bialowas, E. Carlier, and G. Alcaraz, Axon physiology, Physiol. Rev. 91 (2011), pp. 555–602.
  • A.L. Hodgkin and A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. 117 (1952), pp. 500–544.
  • K. Iwasa, I. Tasaki, and R. Gibbons, Swelling of nerve fibers associated with action potentials, Science 210 (1980), pp. 338–339.
  • I. Tasaki, A macromolecular approach to excitation phenomena: Mechanical and thermal changes in nerve during excitation, Physiol. Chem. Phys. Med. NMR 20 (1988), pp. 251–268.
  • T. Heimburg and A. Jackson, On the action potential as a propagating density pulse and the role of anesthetics, Biophys. Rev. Lett. 2 (2007), pp. 57–78.
  • F. Maurin and A. Spadoni, Wave propagation in periodic buckled beams. Part I: Analytical models and numerical simulations, Wave Motion 66 (2016), pp. 190–209.
  • F. Maurin and A. Spadoni, Wave propagation in periodic buckled beams. Part II: Experiments, Wave Motion 66 (2016), pp. 210–219.
  • M.J. Ablowitz, Nonlinear Dispersive Waves. Asymptotic Analysis and Solitons, Cambridge University Press, Cambridge, 2011.
  • T. Kakutani and N. Yamasaki, Solitary Waves on a Two-layer Fluid, J. Phys. Soc. Jpn. 45 (1978), pp. 674–679.
  • A.V. Slyunyaev and E.N. Pelinovski, Dynamics of large-amplitude solitons, J. Exp. Theor. Phys. 116 (1999), pp. 173–181.
  • T. Peets, K. Tamm, and J. Engelbrecht, On the role of nonlinearities in the Boussinesq-type wave equations, Wave Motion. In press. doi:10.1016/j.wavemoti.2016.04.003.
  • B. Lautrup, R. Appali, A.D. Jackson, and T. Heimburg, The stability of solitons in biomembranes and nerves, Eur. Phys. J. E. Soft Matter 34 (2011), pp. 1–9.
  • T. Peets and K. Tamm, On mechanical aspects of nerve pulse propagation and the Boussinesq paradigm, Proc. Estonian Acad. Sci. 64 (2015), pp. 331–337.
  • K. Tamm and T. Peets, On solitary waves in case of amplitude-dependent nonlinearity, Chaos Solitons Fractals 73 (2015), pp. 108–114.
  • T. Peets, K. Tamm, and J. Engelbrecht, Numerical investigation of mechanical waves in biomembranes, in Conference Proceeding YIC GACM 2015 3rd ECCOMAS Young Investing Conference 6th GACM Colloquium, July 20--23, 2015, S. Elgeti and J.W. Simon, eds. Aachen, Germany, 2015, pp. 1–4.
  • B. Fornberg and D.M. Sloan, A review of pseudospectral methods for solving partial differential equations, Acta Numer. 3 (1994), pp. 203–267.
  • B. Fornberg, A Practical Guide to Pseudospectral Methods, Cambridge University Press, Cambridge, 1998.
  • A. Salupere, The pseudospectral method and discrete spectral analysis, in Applied Wave Mathematics, E. Quak and T. Soomere, eds. Springer Berlin Heidelberg, Berlin, 2009, pp. 301–334.
  • E. Jones, T. Oliphant, and P. Peterson, SciPy: Open source scientific tools for Python, (2007). Available at http://www.scipy.org.
  • A. Hindmarsh, ODEPACK, a Systematized Collection of ODE Solvers, Vol. 1, North-Holland, Amsterdam, 1983.
  • J. Engelbrecht, K. Tamm, and T. Peets, On solutions of a Boussinesq-type equation with amplitude-dependent nonlinearities: The case of biomembranes, preprint (2016), Available at arXiv:1606.07678 [nlin.PS].
  • R. Dodd, J. Eilbeck, J. Gibbon, and H. Morris, Solitons and Nonlinear Wave Equations, Academic Press Inc. Ltd., London, 1982.
  • J. Engelbrecht, Beautiful dynamics, Proc. Estonian Acad. Sci. Phys./Math. 1 (1995), pp. 108–119.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.