1,138
Views
24
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Grain boundary engineering: fatigue fracture

Pages 867-916 | Received 07 Apr 2016, Accepted 13 Jan 2017, Published online: 14 Feb 2017

References

  • A. Das, S. Sivaprasad, P.C. Chakraborti, and S. Tarafder, Morphologies and characteristics of deformation induced martensite during low cycle fatigue behaviour of austenitic stainless steel, Mat. Sci. Eng. A 528 (2011), pp. 7909–7914.10.1016/j.msea.2011.07.011
  • A. Das, S. Sivaprasad, P.C. Chakraborti, and S. Tarafder, Connection between deformation-induced dislocation substructures and martensite formation in stainless steel, Philos. Mag. Lett. 91 (2011), pp. 664–675.10.1080/09500839.2011.608385
  • A. Das and S. Tarafder, Experimental investigation on martensitic transformation and fracture morphologies of austenitic stainless steel, Int. J. Plast 25 (2009), pp. 2222–2247.10.1016/j.ijplas.2009.03.003
  • A. Das, S. Sivaprasad, M. Ghosh, P.C. Chakraborti, S. Tarafder, Morphologies and characteristics of deformation induced martensite during tensile deformation of 304 LN stainless steel, Mat. Sci. Eng. A 486 (2008), pp. 283–286.10.1016/j.msea.2007.09.005
  • A. Das, P.C. Chakraborti, S. Tarafder, and H.K.D.H. Bhadeshia, Analysis of deformation induced martensitic transformation in stainless steels, Mater. Sci. Technol. 27 (2011), pp. 366–370.10.1179/026708310X12668415534008
  • A. Das, S. Tarafder, and P.C. Chakraborti, Estimation of deformation induced martensite in austenitic stainless steels, Mat. Sci. Eng. A 529 (2011), pp. 9–20.10.1016/j.msea.2011.08.039
  • A. Das, Resurgence of texture in cyclically deformed austenite, Mater. Charact. 123 (2017), pp. 315–327.10.1016/j.matchar.2016.11.037
  • M. Topic, R.B. Tait, and C. Allen, The fatigue behaviour of metastable (AISI-304) austenitic stainless steel wires, Int. J. Fatigue 29 (2007), pp. 656–665.10.1016/j.ijfatigue.2006.07.007
  • A. Das, Magnetic properties of cyclically deformed austenite, J. Magn. Magn. Mater. 361 (2014), pp. 232–242.10.1016/j.jmmm.2014.02.006
  • H. Mughrabi and H.-J. Christ, Cyclic deformation and microstructure, Cyclic Deformation and Fatigue of Selected Ferritic and Austenitic Steels: Specific Aspects, ISIJ Int. 37 (1997), pp. 1154–1169.
  • G.R. Chanani, D.A. Stephen, and W.W. Gerberich, Fatigue crack propagation in trip steels, Metall. Trans. 3 (1972), pp. 2661–2672.10.1007/BF02644242
  • G. Baudry and A. Pineau, Influence of strain-induced martensitic transformation on the low-cycle fatigue behavior of a stainless steel, Mater. Sci. Eng. 28 (1977), pp. 229–242.10.1016/0025-5416(77)90176-8
  • M. Bayerlein, H.-J. Christ, and H. Mughrabi, Plasticity-induced martensitic transformation during cyclic deformation of AISI 304L stainless steel, Mater. Sci. Eng. A 114 (1989), pp. L11–L16.10.1016/0921-5093(89)90871-X
  • A. Das, Enigma of dislocation patterning due to slip in fatigued austenite, Int. J. Dam. Mech. (2016), pp. 1–20. doi:10.1177/1056789516674765.
  • A. Das, Revisiting stacking fault energy of steels, Metall. Mater. Trans. A 47 (2016), pp. 748–768.10.1007/s11661-015-3266-9
  • J.F. Breedis, Influence of dislocation substructure on the martensitic transformation in stainless steel, Acta Metall. 13 (1965), pp. 239–250.10.1016/0001-6160(65)90201-4
  • H.M. Otte, The formation of stacking faults in austenite and its relation to martensite, Acta Metall. 5 (1957), pp. 614–627.10.1016/0001-6160(57)90108-6
  • T. Watanabe, The impact of grain boundary character distribution on fracture in polycrystals, Mater. Sci. Eng. A 176 (1994), pp. 39–49.10.1016/0921-5093(94)90957-1
  • S. Suresh and R.O. Ritchie, Propagation of short fatigue cracks, Int. Met. Rev. 29 (1984), pp. 445–475.
  • S. Kobayashi, A. Kamata, and T. Watanabe, A mechanism of grain growth-assisted intergranular fatigue fracture in electrodeposited nanocrystalline nickel–phosphorus alloy, Acta Mater. 91 (2015), pp. 70–82.10.1016/j.actamat.2015.03.028
  • T. Hanlon, Y.-N. Kwon, and S. Suresh, Grain size effects on the fatigue response of nanocrystalline metals, Scr. Mater. 49 (2003), pp. 675–680.10.1016/S1359-6462(03)00393-2
  • D.L. Engelberg, R.C. Newman, and T.J. Marrow, Effect of thermomechanical process history on grain boundary control in an austenitic stainless steel, Scripta Mater. 59 (2008), pp. 554–557.10.1016/j.scriptamat.2008.05.012
  • E.O. Hall, The deformation and ageing of mild steel: iii discussion of results, Proc. Phys. Soc. London, Sect. B 64 (1951), pp. 747–753.10.1088/0370-1301/64/9/303
  • N.J. Petch, The cleavage strength of polycrystals, J. Iron Steel Inst. 174 (1953), pp. 25–28.
  • M.F. Ashby, The deformation of plastically non-homogeneous materials, Phil. Mag. 21 (1970), pp. 399–424.10.1080/14786437008238426
  • J.C.M. Li and Y.T. Chou, The role of dislocations in the flow stress grain size relationships, Met. Mat. Trans. 1 (1970), pp. 1145–1159.
  • T. Watanabe, S. Tsurekawa, S. Kobayashi, and S.-I. Yamaura, Structure-dependent grain boundary deformation and fracture at high temperatures, Mater. Sci. Eng. A 410–411 (2005), pp. 140–147.10.1016/j.msea.2005.08.083
  • H. Gleiter, Int. J. Mater. Res., Advanced Structural and Functional Materials. Springer, Berlin Heidelberg, 1991, pp. 1–37.10.1007/978-3-642-49261-7
  • Z.F. Zhang and Z.G. Wang, Grain boundary effects on cyclic deformation and fatigue damage, Prog. Mater. Sci. 53 (2008), pp. 1025–1099.10.1016/j.pmatsci.2008.06.001
  • T.R. Bieler, P. Eisenlohr, F. Roters, D. Kumar, D.E. Mason, M.A. Crimp, and D. Raabe, The role of heterogeneous deformation on damage nucleation at grain boundaries in single phase metals, Int. J. Plasticity 25 (2009), pp. 1655–1683.10.1016/j.ijplas.2008.09.002
  • M. Frary, Crystallographically consistent percolation theory for grain boundary networks, PhD thesis, Massachusetts Institute of Technology, Massachusetts Avenue, Cambridge, MA, USA, 2005.
  • M.D. Sangid, T. Ezaz, H. Sehitoglu, and I.M. Robertson, Energy of slip transmission and nucleation at grain boundaries, Acta Mater. 59 (2011), pp. 283–296.10.1016/j.actamat.2010.09.032
  • M.A. Asle Zaeem, H. El Kadiri, P.T. Wang, and M.F. Horstemeyer, Investigating the effects of grain boundary energy anisotropy and second-phase particles on grain growth using a phase-field model, Comput. Mater. Sci. 50 (2011), pp. 2488–2492.10.1016/j.commatsci.2011.03.031
  • S. Kobayashi, M. Hirata, S. Tsurekawa, and T. Watanabe, Grain boundary engineering for control of fatigue crack propagation in austenitic stainless steel, Procedia Eng. 10 (2011), pp. 112–117.10.1016/j.proeng.2011.04.021
  • M. Suzuki and H. Takahashi, Fatigue and electrical resistivity of copper electrodeposits, Z. Metallkunde 57 (1966), pp. 484–487.
  • Y. Yang, B. Imasogie, G.J. Fan, P.K. Liaw, and W.O. Soboyejo, Fatigue and fracture of a bulk nanocrystalline NiFe alloy, Metall. Mater. Trans. A 39 (2008), pp. 1145–1156.10.1007/s11661-008-9487-4
  • T. Angel, Formation of martensite in austenitic stainless steels-effects of deformation, temperature, and composition, J. Iron Steel Inst. 177 (1954), pp. 165–174.
  • A. Das, Dislocation configurations through austenite grain misorientations, Int. J. Fatigue 70 (2015), pp. 473–479.10.1016/j.ijfatigue.2014.06.012
  • A. Das, Slip system activity during cyclic plasticity, Metall. Mater. Trans. A 45 (2014), pp. 2927–2930.10.1007/s11661-014-2295-0
  • J. Talonen, P. Aspegren, and H. Hänninen, Comparison of different methods for measuring strain induced α’-martensite content in austenitic steels. Mater. Sci. Tech. 20 (2004), pp. 1506–1512.
  • E.E. Underwood and K. Banerji, Quantitative fractography, ASM Handbook. 12 (1987), pp. 193–210.
  • A. El Bartali, V. Aubin, L. Sabatier, P. Villechaise, and S. Degallaix-Moreuil, Identification and analysis of slip systems activated during low-cycle fatigue in a duplex stainless steel, Scr. Mater. 59 (2008), pp. 1231–1234.10.1016/j.scriptamat.2008.07.044
  • M.C. Marinelli, A. El Bartali, J.W. Signorelli, P. Evrard, V. Aubin, I. Alvarez-Armas, and S. Degallaix-Moreuil, Activated slip systems and microcrack path in LCF of a duplex stainless steel, Mater. Sci. Eng. A 509 (2009), pp. 81–88.10.1016/j.msea.2009.01.012
  • D.G. Brandon, The structure of high-angle grain boundaries, Acta Metall. 14 (1966), pp. 1479–1484.10.1016/0001-6160(66)90168-4
  • P. Fortier, W.A. Miller, and K.T. Aust, Triple junction and grain boundary character distributions in metallic materials, Acta Mater. 45 (1997), pp. 3459–3467.10.1016/S1359-6454(97)00004-9
  • A. Das, Phase transformation during tensile and low cycle fatigue deformation of AISI 304LN stainless steel, PhD Thesis, Jadavpur University, Kolkata, 2013.
  • S. Ganesh Sundara Raman and K.A. Padmanabhan, Influence of martensite formation and grain size on room temperature low cycle fatigue behaviour of AISI 304LN austenitic stainless steel, Mater. Sci. Technol. 10 (1994), pp. 614–620.10.1179/mst.1994.10.7.614
  • Y. Murakami and K.J. Miller, What is fatigue damage? A view point from the observation of low cycle fatigue process, Inter. J. Fatigue 27 (2005), pp. 991–1005.10.1016/j.ijfatigue.2004.10.009
  • A. Das, Martensite–Void interaction, Scr. Mater. 68 (2013), pp. 514–517.10.1016/j.scriptamat.2012.11.039
  • A. Das, Crystallographic variant selection of martensite at high stress/strain, Philos. Mag. 95 (2015), pp. 2210–2227.10.1080/14786435.2015.1042938
  • A. Das, Crystallographic variant selection of martensite during fatigue deformation, Philos. Mag. 95 (2015), pp. 844–860.10.1080/14786435.2015.1008069
  • A. Das, Spatial martensite, Mater. Sci. Eng. A 658 (2016), pp. 484–489.10.1016/j.msea.2016.01.072
  • A. Das, Intervention of martensite variants on the spatial aspect of microvoids, Mater. Res. Express 3 (2016), pp. 066501-1–066501-15.10.1088/2053-1591/3/6/066501
  • N.Q. Vo, R.S. Averback, P. Bellon, S. Odunuga, and A. Caro, Quantitative description of plastic deformation in nanocrystalline Cu: Dislocation glide vs. grain boundary sliding, Phy. Rev. 77 (2008), pp. 134108-1–134108-9.
  • M.D. Sangid, H.J. Maier, and H. Sehitoglu, The role of grain boundaries on fatigue crack initiation–An energy approach, Inter. J. Plast. 27 (2011), pp. 801–821.10.1016/j.ijplas.2010.09.009
  • J. Miao, T.M. Pollock, and J.W. Wayne Jones, Crystallographic fatigue crack initiation in nickel-based superalloy René 88DT at elevated temperature, Acta Mater. 57 (2009), pp. 5964–5974.10.1016/j.actamat.2009.08.022
  • T. Watanabe, Grain boundary engineering: historical perspective and future prospects, J. Mater. Sci. 46 (2011), pp. 4095–4115.10.1007/s10853-011-5393-z
  • P.H. Pumphrey and H. Gleiter, The annealing of dislocations in high-angle grain boundaries, Philos. Mag. 30 (1974), pp. 593–602.10.1080/14786439808206584
  • Z. Nishiyama, Martensitic transformation, M. Fine, M. Meshii, and C. Wayman, eds., Academic Press, Inc. (London) Ltd 1978.
  • G. Thomas and C. Vercaemer, Enhanced strengthening of a spinodal fe-ni-cu alloy by martensitic transformation, Metall. Trans. 3 (1972), pp. 2501–2506.10.1007/BF02647055
  • W.C. Leslie and R.L. Miller, The stabilization of austenite by closely spaced boundaries, ASM Trans. Q 57 (1964), pp. 972–979.
  • H.-S. Yang and H.K.D.H. Bhadeshia, Austenite grain size and the martensite-start temperature, Scr. Mater. 60 (2009), pp. 493–495.10.1016/j.scriptamat.2008.11.043
  • A. Das and S. Tarafder, Geometry of dimples and its correlation with mechanical properties in austenitic stainless steel, Scr. Mater. 59 (2008), pp. 1014–1017.10.1016/j.scriptamat.2008.07.012
  • A. Das, S.K. Das, S. Sivaprasad, and S. Tarafder, Fracture-property correlation in copper-strengthened high-strength low-alloy steel, Scr. Mater. 59 (2008), pp. 681–683.10.1016/j.scriptamat.2008.05.043
  • A. Das, S. Sivaprasad, P.C. Chakraborti, and S. Tarafder, Correspondence of fracture surface features with mechanical properties in 304LN stainless steel, Mater. Sci. Eng. A 496 (2008), pp. 98–105.10.1016/j.msea.2008.05.007
  • A. Das, S.K. Das, and S. Tarafder, Correlation of fractographic features with mechanical properties in systematically varied microstructures of Cu-strengthened high-strength low-alloy steel, Metall. Mater. Trans. A 40 (2009), pp. 3138–3146.10.1007/s11661-009-9999-6
  • A. Das and P. Poddar, Structure–wear-property correlation, Mater. Des. 47 (2013), pp. 557–565.10.1016/j.matdes.2012.12.041
  • G. Sanyal, A. Das, J.B. Singh, and J.K. Chakravartty, Effect of notch geometry on fracture features, Mater. Sci. Eng. A 641 (2015), pp. 210–214.10.1016/j.msea.2015.06.044
  • A. Das, Contribution of deformation-induced martensite to fracture appearance of austenitic stainless steel, Mater. Sci. Tech. 32 (2016), pp. 1366–1373.
  • A. Das and J.K. Chakravartty, Correlation of fracture features with mechanical properties as a function of strain rate in zirconium alloys, Inter. J. Mater. Res. 107 (2016), pp. 184–188.10.3139/146.111331
  • ASM Handbook, 19, Fatigue and Fracture, ASM International, 1996.
  • J.C. McMillan and R.M.N Pelloux, Fatigue crack propagation under program and random loads. In Fatigue Crack Propagation, STP 415, ASTM, 505 (1967).
  • M. Shimojo, Y. Uchida, S. Turuoka, and Y. Higo, Fatigue striation formation in an Fe-3% Si alloy-effects of crystallographic orientation and neighbouring grains, Fat. Fract. Eng. Mat. Str. 22 (1999), pp. 153–159.10.1046/j.1460-2695.1999.00150.x
  • P.J.E. Forsyth and D.A. Ryder, Some results of the examination of aluminum alloy specimen fracture surfaces, Metallurgia 63 (1961), pp. 117–124.
  • J.J. Au, and J.S. Ke, Correlation between fatigue crack growth rate and fatigue striation spacing in AISI 9310 (AMS6265) steel, in ASTM STP733, (1980) pp. 202–221.
  • R.C. Bates and W.G. Clark Jr., Transactions Quarterly. ASM 62 (1969), pp. 380–389.
  • R.W. Hertzberg and E.F. Von Euw, Crack closure and fatigue striations in 2024-T3 aluminum alloy, Metall. Trans. 4 (1973), pp. 887–889.10.1007/BF02643104
  • J. Forth, and W. Schutz, Crack Propagation Under Constant and Variable Stress Amplitudes: A Comparison of Calculations Based on the Striation Spacing and Tests, AGARD (NATO), vol. CP-376, No. CP-376 (1984) pp. 17.1–17.9.
  • F. Alexandre, S. Deyber, and A. Pineau, Modelling the optimum grain size on the low cycle fatigue life of a Ni based superalloy in the presence of two possible crack initiation sites, Scr. Mater. 50 (2004), pp. 25–30.10.1016/j.scriptamat.2003.09.043
  • S. Kobayashi, T. Inomata, H. Kobayashi, S. Tsurekawa, and T. Watanabe, Effects of grain boundary-and triple junction-character on intergranular fatigue crack nucleation in polycrystalline aluminium, J. Mater. Sci. 43 (2008), pp. 3792–3799.10.1007/s10853-007-2236-z
  • B. Tomkins, Fatigue crack propagation – an analysis, Philos. Mag. 18 (1968), pp. 1041–1066.10.1080/14786436808227524
  • A.W. Thompson, The influence of grain and tilt boundaries in fatigue cracking, Acta Metall. 20 (1972), pp. 1085–1094.10.1016/0001-6160(72)90172-1
  • H. Mughrabi, Cyclic slip irreversibilities and the evolution of fatigue damage, Metall. Mater. Trans. A 40 (2009), pp. 1257–1279.10.1007/s11661-009-9839-8
  • G. Dorr and C. Blochwitz, Microcracks in fatigued FCC polycrystals by interaction between persistent slip bands and grain boundaries, Cryst. Res. Technol. 22 (1987), pp. 113–121.10.1002/(ISSN)1521-4079
  • C. Blochwitz, J. Brechbuhl, and W. Tirschler, Misorientation measurements near grain boundary cracks after fatigue tests, Strength Mater. 27 (1995), pp. 3–13.10.1007/BF02206406
  • R. Koterazawa, M. Mori, T. Matsui, and D. Shimo, Fractographic study of fatigue crack propagation, J. Eng. Mater. Technol. 95 (1973), pp. 202–212.10.1115/1.3443154
  • U. Krupp, Acta Mater., WILEY-VCH Verlag GmbH & Co., Kga A, Weinheim Germany, 2007.10.1002/9783527610686
  • T.S. Gross and S. Lampman, Micromechanisms of monotonic and cyclic crack growth, ASM handbook 19 (1996), pp. 42–60.
  • M. Kumar, W.E. King, and A.J. Schwartz, Modifications to the microstructural topology in fcc materials through thermo mechanical processing, Acta Mater. 48 (2000), pp. 2081–2091.10.1016/S1359-6454(00)00045-8
  • R.W. Minich, C.A. Schuh, and M. Kumar, Role of topological constraints on the statistical properties of grain boundary networks, Phys. Rev. B 66 (2002), pp. 052101-1–052101-4.10.1103/PhysRevB.66.052101
  • C.A. Schuh, R.W. Minich, and M. Kumar, Connectivity and percolation in simulated grain-boundary networks, Philos. Mag. 83 (2003), pp. 711–726.10.1080/0141861021000056681
  • M. Frary and C.A. Schuh, Connectivity and percolation behaviour of grain boundary networks in three dimensions, Philos. Mag. 85 (2005), pp. 1123–1143.10.1080/14786430412331323564
  • L. Llanes and C. Laird, The role of annealing twin boundaries in the cyclic deformation of fcc materials, Mater. Sci. Eng. A 157 (1992), pp. 21–27.10.1016/0921-5093(92)90094-H
  • A. Pineau, In: Ostoja-Starzewski, M. (ed.), Mechanics of Random and Multiscale Microstructures. CISM, 163–220 (1993).
  • C. Laird and L. Buchinger, Hardening behavior in fatigue, Metall. Trans. A 16 (1985), pp. 2201–2214.10.1007/BF02670419
  • S. Kobayashi, S. Tsurekawa, T. Watanabe, and G. Palumbo, Grain boundary engineering for control of sulfur segregation-induced embrittlement in ultrafine-grained nickel, Scr. Mater. 62 (2010), pp. 294–297.10.1016/j.scriptamat.2009.11.022
  • B.B. Rath, M.A. Imam, and C.S. Pande, Nucleation and growth of twin interfaces in fcc metals and alloys, Mater. Phys. Mech. 1 (2000), pp. 61–66.
  • G. Palumbo, E.M. Lehockey, and P. Lin, Applications for grain boundary engineered materials, J. Mat. 50 (1998), pp. 40–43.
  • V. Randle, P.R. Rios, and Y. Hu, Grain growth and twinning in nickel, Scr. Mater. 58 (2008), pp. 130–133.10.1016/j.scriptamat.2007.09.016
  • R.C. Boettner, A.J. McEvily Jr, and Y.C. Liu, On the formation of fatigue cracks at twin boundaries, Philos. Mag. 10 (1964), pp. 95–106.10.1080/14786436408224210
  • P.H. Pumphrey and K.M. Bowkett, Observation of partial dislocations on a coherent twin boundary, Philos. Mag. 24 (1971), pp. 225–230.10.1080/14786437108227382
  • V. Randle, Twinning-related grain boundary engineering, Acta Mater. 52 (2004), pp. 4067–4081.10.1016/j.actamat.2004.05.031
  • A. Das, V. Verma, and C.B. Basak, Elucidating microstructure of spinodal copper alloy through annealing, Mater. Char. 120 (2016), pp. 152–158.10.1016/j.matchar.2016.08.021
  • V.Y. Gertsman and C.H. Henager Jr., Grain boundary junctions in microstructure generated by multiple twinning, Interf. Sci. 11 (2003), pp. 403–415.10.1023/A:1026191810431
  • L.L. Li, Z.J. Zhang, P. Zhang, and Z.F. Zhang, Higher fatigue cracking resistance of twin boundaries than grain boundaries in Cu bicrystals, Scr. Mater. 65 (2011), pp. 505–508.10.1016/j.scriptamat.2011.06.009
  • A. Heinz and P. Neumann, Crack initiation during high cycle fatigue of an austenitic steel, Acta Met. Mat. 38 (1990), pp. 1933–1940.10.1016/0956-7151(90)90305-Z
  • H. Mughrabi, R. Wang, N. Hansen, A. Horsewell, T. Leffers and H. Lilholt (eds.), Deformation of Polycrystals: Mechanisms and Microstructures, Proc. 2nd Riso Int. Symp. On Metallurgy and Materials Science, September 1981, Riso national Laboratory, Riso 87 (1981).
  • J.C. Figueroa and C. Laird, The cyclic stress-strain response of copper at low strains – II, Variable amplitude testing, Acta Met. 29 (1981), pp. 1679–1684.
  • J.L. Bair, S.L. Hatch, and D.P. Field, Formation of annealing twin boundaries in nickel, Scr. Mater. 81 (2014), pp. 52–55.10.1016/j.scriptamat.2014.03.008
  • L. Jiang, H. Wang, P.K. Liaw, C.R. Brooks, and D.L. Klarstrom, Temperature evolution during low-cycle fatigue of ULTIMET® alloy: experiment and modelling, Mech. Mater. 36 (2004), pp. 73–84.10.1016/S0167-6636(03)00032-2
  • G. Meneghetti and M. Ricotta, The use of the specific heat loss to analyse the low-and high-cycle fatigue behaviour of plain and notched specimens made of a stainless steel, Eng. Fract. Mech. 81 (2012), pp. 2–16.10.1016/j.engfracmech.2011.06.010
  • M. Amiri and M.M. Khonsari, Rapid determination of fatigue failure based on temperature evolution: Fully reversed bending load, Inter. J. Fatigue 32 (2010), pp. 382–389.10.1016/j.ijfatigue.2009.07.015
  • M. Kumar, A.J. Schwartz, and W.E. King, Microstructural evolution during grain boundary engineering of low to medium stacking fault energy fcc materials, Acta Mater. 50 (2002), pp. 2599–2612.10.1016/S1359-6454(02)00090-3
  • X.H. An, Q.Y. Lin, S.D. Wu, and Z.F. Zhang, Mechanically driven annealing twinning induced by cyclic deformation in nanocrystalline Cu, Scr. Mater. 68 (2013), pp. 988–991.10.1016/j.scriptamat.2013.02.053
  • Q.S. Pan and L. Lu, Strain-controlled cyclic stability and properties of Cu with highly oriented nanoscale twins, Acta Mater. 81 (2014), pp. 248–257.10.1016/j.actamat.2014.08.011
  • T. Watanabe, An approach to grain boundary design for strong and ductile polycrystals, Res. Mech. 11 (1984), pp. 47–84.
  • L.E. Murr, Interfacial phenomena in metal and alloys. Reading, MA: Addison Wesley., 1975 [Reprinted by Teck books, Fairfax, VA, 1991.].
  • S. Kobayashi, M. Nakamura, S. Tsurekawa, and T. Watanabe, Effect of grain boundary microstructure on fatigue crack propagation in austenitic stainless steel, J. Mater. Sci. 46 (2011), pp. 4254–4260.10.1007/s10853-010-5238-1
  • W.H. Kim and C. Laird, Crack nucleation and stage I propagation in high strain fatigue – I, Microscopic and interferometric observations, Acta Met. 26 (1978), pp. 777–787.
  • A.J. McEvily, S. Ishihara, M. Endo, H. Sakai, and H. Matsunaga, On one-and two-parameter analyses of short fatigue crack growth, Inter. J. Fatigue 29 (2007), pp. 2237–2245.10.1016/j.ijfatigue.2006.11.012
  • D.L. McDowell and F.P.E. Dunne, Microstructure-sensitive computational modeling of fatigue crack formation, Inter. J. Fatigue 32 (2010), pp. 1521–1542.10.1016/j.ijfatigue.2010.01.003
  • S. Kobayashi, S. Tsurekawa, and T. Watanabe, Structure-dependent triple junction hardening and intergranular fracture in molybdenum, Philos. Mag. 86 (2006), pp. 5419–5429.10.1080/14786430600672711
  • V. Randle, The influence of grain junctions and boundaries on superplastic deformation, Acta Met. Mat. 43 (1995), pp. 1741–1749.10.1016/0956-7151(94)00414-D
  • L.C. Lim and T. Watanabe, Grain boundary character distribution controlled toughness of polycrystals - A two-dimensional model, Scr. Met. 23 (1989), pp. 489–494.10.1016/0036-9748(89)90438-9
  • L.C. Lim, Surface intergranular cracking in large strain fatigue, Acta Metall. 35 (1987), pp. 1653–1662.
  • W. Zhongguang, W. Guonan, K. Wei, and H. Haicai, Influence of the martensite content on the fatigue behaviour of a dual-phase steel, Mater. Sci. Eng. 91 (1987), pp. 39–44.10.1016/0025-5416(87)90281-3
  • Z.F. Zhang and Z.G. Wang, Comparison of fatigue cracking possibility along large-and low-angle grain boundaries, Mater. Sci. Eng. A 284 (2000), pp. 285–291.10.1016/S0921-5093(00)00796-6
  • M. Frary and C.A. Schuh, Grain boundary networks: Scaling laws, preferred cluster structure, and their implications for grain boundary engineering, Acta Mater. 53 (2005), pp. 4323–4335.10.1016/j.actamat.2005.05.030
  • C.A. Schuh, M. Kumar, and W.E. King, Analysis of grain boundary networks and their evolution during grain boundary engineering, Acta Mater. 51 (2003), pp. 687–700.10.1016/S1359-6454(02)00447-0
  • X. Fang, K. Zhang, W. Wang, and B. Zhou, Twin-induced grain boundary engineering in 304 stainless steel, Mater. Sci. Eng. A 487 (2008), pp. 7–13.10.1016/j.msea.2007.09.075

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.