756
Views
13
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Initial dislocation density effect on strain hardening in FCC aluminium alloy under laser shock peening

, , , , , & show all
Pages 917-929 | Received 17 Oct 2016, Accepted 16 Jan 2017, Published online: 02 Feb 2017

References

  • X. Wang, M. Rochon, A. Lamprokostopoulou, H. Lünsdorf, M. Nimtz, and U. Römling, Dislocation sources and the flow stress of polycrystalline thin metal films, Philos. Mag. Lett. 83 (2003), pp. 1–8.
  • V.V. Bulatov, L.L. Hsiung, M. Tang, A. Arsenlis, M.C. Bartelt, W. Cai, J.N. Florando, M. Hiratani, M. Rhee, G. Hommes, T.G. Pierce, and T.D. de la Rubia, Dislocation multi-junctions and strain hardening, Nature 440 (2006), pp. 1174–1178.10.1038/nature04658
  • R. Gu and A.H.W. Ngan, Effects of pre-straining and coating on plastic deformation of aluminum micropillars, Acta Mater. 60 (2012), pp. 6102–6111.10.1016/j.actamat.2012.07.048
  • A.S. Schneider, D. Kiener, C.M. Yakacki, H.J. Maier, P.A. Gruber, N. Tamura, M. Kunz, A.M. Minor, and C.P. Frick, Influence of bulk pre-straining on the size effect in nickel compression pillars, Mater. Sci. Eng. A 559 (2013), pp. 147–158.10.1016/j.msea.2012.08.055
  • A.S. Mutasem, Multiscale dislocation dynamics simulations of shock-induced plasticity in small volumes, Philos. Mag. 92 (2012), pp. 1173–1197.
  • C. Zhou and R. LeSar, Dislocation dynamics simulations of plasticity in polycrystalline thin films, Int. J. Plast. 30–31 (2012), pp. 185–201.10.1016/j.ijplas.2011.10.001
  • K. Gururaj, C. Robertson, and M. Fivel, Channel formation and multiplication in irradiated FCC metals: a 3D dislocation dynamics investigation, Philos. Mag. 95 (2015), pp. 1368–1389.10.1080/14786435.2015.1029560
  • A. Vattré, B. Devincre, and A. Roos, Dislocation dynamics simulations of precipitation hardening in Ni-based superalloys with high γ′ volume fraction, Intermetallics 17 (2009), pp. 988–994.10.1016/j.intermet.2009.04.007
  • A.M. Hussein, S.I. Rao, M.D. Uchic, D.M. Dimiduk, and J.A. El-Awady, Microstructurally based cross-slip mechanisms and their effects on dislocation microstructure evolution in fcc crystals, Acta Mater. 85 (2015), pp. 180–190.10.1016/j.actamat.2014.10.067
  • J.A. El-Awady, M.D. Uchic, P.A. Shade, S.-L Kim, S.I. Rao, D.M. Dimiduk, and C. Woodward, Pre-straining effects on the power-law scaling of size-dependent strengthening in Ni single crystals, Scr. Mater. 68 (2013), pp. 207–210.10.1016/j.scriptamat.2012.10.035
  • A.M. Hussein and J.A. El-Awady, Quantifying dislocation microstructure evolution and cyclic hardening in fatigued face-centered cubic single crystals, J. Mech. Phys. Solids 91 (2016), pp. 126–144.10.1016/j.jmps.2016.03.012
  • R.N. Yellakara and Z. Wang, Modeling effects of initial dislocation microstructure on the yield strength in FCC single crystal Cu with dislocation dynamics, Comput. Mater. Sci. 75 (2013), pp. 79–85.10.1016/j.commatsci.2013.04.008
  • Y. Li, K. Sun, P. Liu, Y. Liu, and P. Chui, Surface nanocrystallization induced by fast multiple rotation rolling on Ti–6Al–4V and its effect on microstructure and properties, Vacuum 101 (2014), pp. 102–106.10.1016/j.vacuum.2013.07.028
  • Y.G. Liu, M.Q. Li, and H.J. Liu, Surface nanocrystallization and gradient structure developed in the bulk TC4 alloy processed by shot peening, J. Alloys Compd. 685 (2016), pp. 186–193.10.1016/j.jallcom.2016.05.295
  • J.Z. Lu, K.Y. Luo, Y.K. Zhang, G.F. Sun, Y.Y. Gu, J.Z. Zhou, X.D. Ren, X.C. Zhang, L.F. Zhang, K.M. Chen, C.Y. Cui, Y.F. Jiang, A.X. Feng, and L. Zhang, Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel, Acta Mater. 58 (2010), pp. 5354–5362.10.1016/j.actamat.2010.06.010
  • Y. Guo, M.P. Sealy, and C. Guo, Significant improvement of corrosion resistance of biodegradable metallic implants processed by laser shock peening, CIRP Ann. Manuf. Technol. 61 (2012), pp. 583–586.
  • E. Maawad, Y. Sano, L. Wagner, H.G. Brokmeier, and C. Genzel, Investigation of laser shock peening effects on residual stress state and fatigue performance of titanium alloys, Mater. Sci. Eng. A 536 (2012), pp. 82–91.10.1016/j.msea.2011.12.072
  • G.J. Cheng and M.A. Shehadeh, Multiscale dislocation dynamics analyses of laser shock peening in silicon single crystals, Int. J. Plast. 22 (2006), pp. 2171–2194.10.1016/j.ijplas.2006.03.006
  • Y. Liao and G.J. Cheng, Controlled precipitation by thermal engineered laser shock peening and its effect on dislocation pinning: multiscale dislocation dynamics simulation and experiments, Acta Mater. 61 (2013), pp. 1957–1967.10.1016/j.actamat.2012.12.016
  • C. Ye, Y. Liao, S. Suslov, D. Lin, and G.J. Cheng, Ultrahigh dense and gradient nano-precipitates generated by warm laser shock peening for combination of high strength and ductility, Mater. Sci. Eng. A 609 (2014), pp. 195–203.10.1016/j.msea.2014.05.003
  • A. Arsenlis, W. Cai, M. Tang, M. Rhee, T. Oppelstrup, G. Hommes, T.G. Pierce, and V.V. Bulatov, Enabling strain hardening simulations with dislocation dynamics, Modell. Simul. Mater. Sci. Eng. 15 (2007), pp. 553–595.10.1088/0965-0393/15/6/001
  • R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, Physical study of laser-produced plasma in confined geometry, J. Appl. Phys. 68 (1990), pp. 775–784.10.1063/1.346783
  • W. Cai and V.V. Bulatov, Mobility laws in dislocation dynamics simulations, Mater. Sci. Eng. A 387 (2003), pp. 277–281.
  • M.A. Shehadeh, H.M. Zbib, and T. Diaz De La Rubia, Modelling the dynamic deformation and patterning in fcc single crystals at high strain rates: dislocation dynamics plasticity analysis, Philos. Mag. 85 (2005), pp. 1667–1685.10.1080/14786430500036470
  • G. Lu, V.V. Bulatov, and N. Kioussis, On stress assisted dislocation constriction and cross-slip, Int. J. Plast. 20 (2004), pp. 447–458.10.1016/S0749-6419(03)00096-2
  • D. Rittel, G. Ravichandran, and A. Venkert, The mechanical response of pure iron at high strain rates under dominant shear, Mater. Sci. Eng. A 432 (2006), pp. 191–201.10.1016/j.msea.2006.05.154
  • G.M. Weston, Flow stress of shock-hardened Remco iron over strain rates from 0.001 to 9000 s−1, J. Mater. Sci. Lett. 11 (1992), pp. 1361–1363.10.1007/BF00729362
  • J.A. El-Awady, Unravelling the physics of size-dependent dislocation-mediated plasticity, Nat. Commun. 6 (2015), pp. 5926–5926.10.1038/ncomms6926
  • D. Bardel, M. Perez, D. Nelias, S. Dancette, P. Chaudet, and V. Massardier, Cyclic behaviour of a 6061 aluminium alloy: coupling precipitation and elastoplastic modelling, Acta Mater. 83 (2015), pp. 256–268.10.1016/j.actamat.2014.09.034
  • M.A. Meyers, O. Vöhringer, and V.A. Lubarda, The onset of twinning in metals: a constitutive description, Acta Mater. 49 (2001), pp. 4025–4039.10.1016/S1359-6454(01)00300-7
  • K. Sakino, Strain rate dependence of dynamic flow stress of 6061-T6 aluminum alloy at strain rates ranging from 1 × 103 to 4 × 104 s-1, J. Soc. Mater. Sci. Jpn. 55 (2006), pp. 1021–1026.10.2472/jsms.55.1021
  • S. Yadav, D.R. Chichili, and K.T. Ramesh, The mechanical response of a 6061-T6 A1/A12O3 metal matrix composite at high rates of deformation, Acta Metall. Mater. 43 (1995), pp. 4453–4464.10.1016/0956-7151(95)00123-D
  • D. Bardel, M. Perez, D. Nelias, A. Deschamps, C.R. Hutchinson, D. Maisonnette, T. Chaise, J. Garnier, and F. Bourlier, Coupled precipitation and yield strength modelling for non-isothermal treatments of a 6061 aluminium alloy, Acta Mater. 62 (2014), pp. 129–140.10.1016/j.actamat.2013.09.041
  • J.D. Robson, N. Stanford, and M.R. Barnett, Effect of precipitate shape on slip and twinning in magnesium alloys, Acta Mater. 59 (2011), pp. 1945–1956.10.1016/j.actamat.2010.11.060
  • J. Wang and N. Stanford, Investigation of precipitate hardening of slip and twinning in Mg5%Zn by micropillar compression, Acta Mater. 100 (2015), pp. 53–63.10.1016/j.actamat.2015.08.012

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.