156
Views
6
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Inherent hydrostatic tensile strength of tungsten nanocrystals

, , , , &
Pages 930-943 | Received 15 Oct 2016, Accepted 17 Jan 2017, Published online: 08 Feb 2017

References

  • Z.W. Shan, R.K. Mishra, S.A.S. Asif, O.L. Warren, and A.M. Minor, Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals, Nat. Mater. 7 (2007), pp. 115–119.
  • J.R. Greer and J.Th.M. De Hosson, Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect, Prog. Mater. Sci. 56 (2011), pp. 654–724.10.1016/j.pmatsci.2011.01.005
  • W.-Z. Han, L. Huang, S. Ogata, H. Kimizuka, Z.C. Yang, C. Weinberger, Q.-J. Li, B.-Y. Liu, X.-X. Zhang, J. Li, E. Ma, and Z.-W. Shan, From “smaller is stronger” to “size-independent strength plateau”: Towards measuring the ideal strength of iron, Adv. Mater. 27 (2015), pp. 3385–3390.10.1002/adma.v27.22
  • J. Wang, F. Sansoz, J. Huang, Y. Liu, S. Sun, Z. Zhang, and S.X. Mao, Near-ideal theoretical strength in gold nanowires containing angstrom scale twins, Nat. Commun. 4 (2013), pp. 1742–1748.10.1038/ncomms2768
  • H. Zheng, A. Cao, C.R. Weinberger, J.Y. Huang, K. Du, J. Wang, Y. Ma, Y. Xia, and S.X. Mao, Discrete plasticity in sub-10-nm-sized gold crystals, Nat. Commun. 1 (2010), pp. 144–152.10.1038/ncomms1149
  • M. Černý, P. Šesták, and J. Pokluda, Strength of bcc crystals under combined shear and axial loading from first principles, Comput. Mater Sci. 55 (2012), pp. 337–343.10.1016/j.commatsci.2011.11.009
  • M. Černý, P. Šesták, J. Pokluda, and M. Šob, Shear instabilities in perfect bcc crystals during simulated tensile tests, Phys. Rev. B 87 (2013), p. 014117.10.1103/PhysRevB.87.014117
  • M. Černý and J. Pokluda, Ideal tensile strength of cubic crystals under superimposed transverse biaxial stresses from first principles, Phys. Rev. B 82 (2010), p. 174106.10.1103/PhysRevB.82.174106
  • D.M. Clatterbuck, D.C. Chrzan, and J.W. Morris Jr, The influence of triaxial stress on the ideal tensile strength of iron, Scr. Mater. 49 (2003), pp. 1007–1011.10.1016/S1359-6462(03)00490-1
  • J.W. Morris Jr and C.R. Krenn, The internal stability of an elastic solid, Philos. Mag. A 80 (2000), pp. 2827–2840.10.1080/01418610008223897
  • A.P. Shpak, S.O. Kotrechko, T.I. Mazilova, and I.M. Mikhailovskij, Inherent tensile strength of molybdenum nanocrystals, Sci. Technol. Adv. Mater. 10 (2009), p. 045004 (9 pp.).
  • A.S. Bakai, A.P. Shpak, N. Wanderka, S. Kotrechko, T.I. Mazilova, and I.M. Mikhailovskij, Inherent strength of zirconium-based bulk metallic glass, J. Non-Cryst. Solids 356 (2010), pp. 1310–1314.10.1016/j.jnoncrysol.2010.03.009
  • I.M. Mikhailovskij, T.I. Mazilova, V.N. Voyevodin, and A.A. Mazilov, Inherent strength of grain boundaries in tungsten, Phys. Rev. B 83 (2011), p. 134115 (7 pp.).10.1103/PhysRevB.83.134115
  • I.M. Mikhailovskij, E.V. Sadanov, S. Kotrechko, V.A. Ksenofontov, and T.I. Mazilova, Measurement of the inherent strength of carbon atomic chains, Phys. Rev. B 87 (2013), p. 045410 (7 pp.).
  • M.K. Miller, A. Cerezo, M.G. Hetherington, and G.D.W. Smith, Atom-Probe Field Ion Microscopy, Oxford University, Oxford, 1996.
  • E.W. Müller and T.T. Tsong, Field-ion Microscopy, Principles and Applications, Elsevier, New York, 1969.
  • T. Sakurai and E.W. Müller, Field calibration using the energy distribution of field ionization, Phys. Rev. Lett. 30 (1973), pp. 532–535.10.1103/PhysRevLett.30.532
  • M.K. Miller and R.G. Forbes, Atom-Probe Tomography, Springer, New York, 2014.10.1007/978-1-4899-7430-3
  • I.M. Mikhailovskii, V.A. Ksenofontov, and T.I. Mazilova, Anisotropy of low-temperature field evaporation of metals, J. Exp. Theor. Phys. Lett. 65 (1997), pp. 537–543.10.1134/1.567454
  • E.W. Müller and R.D. Young, Determination of field strength for field evaporation and ionization in the field ion microscope, J. Appl. Phys. 32 (1961), pp. 2525–2428.
  • X. Dai, Y. Kong, J. Li, and B. Liu, Extended Finnis–Sinclair potential for bcc and fcc metals and alloys, J. Phys.: Condens. Matter 18 (2006), p. 4527.
  • M.W. Finnis and J.E. Sinclair, A simple empirical N-body potential for transition metals, Philos. Mag. A 50 (1984), pp. 45–55.10.1080/01418618408244210
  • G.J. Ackland and R. Thetford, An improved N-body semi-empirical model for bcc transition metals, Philos. Mag. A 56 (1987), pp. 15–30.10.1080/01418618708204464
  • S. Kotrechko and A. Ovsjannikov, Temperature dependence of the yield stress of metallic nano-sized crystals, Philos. Mag. 89 (2009), pp. 3049–3058.10.1080/14786430903179554
  • S. Ogata, J. Li, N. Hirosaki, Y. Shibutani, and S. Yip, Ideal shear strain of metals and ceramics, Phys. Rev. B 70 (2004), pp. 104104–104110.10.1103/PhysRevB.70.104104
  • M. Černý, M. Šob, J. Pokluda, and P. Šandera, Ab initio calculations of ideal tensile strength and mechanical stability in copper, J. Phys.: Condens. Matter 16 (2004), pp. 1045–1051.
  • M. Šob, L.G. Wang, and V. Vitek, The role of higher-symmetry phases in anisotropy of theoretical tensile strength of metals and intermetallics, Phil. Mag. B 78 (1998), pp. 653–658.
  • S. Kotrechko, O. Filatov, and O. Ovsjannikov, Peculiarities of plastic deformation and failure of nanoparticles of b.c.c. transition metals, Mater. Sci. Forum 567–568 (2007), pp. 65–68.
  • W. Luo, D. Roundy, M.L. Cohen, and J. W. Morris Jr., Ideal strength of bcc molybdenum and niobium, Phys. Rev. B 66 (2002), p. 094110.
  • C.R. Krenn, D. Roundy, J.W. Morris Jr, and M.L. Cohen, The ideal strengths of bcc metals, Mater. Sci. Eng. A 319–321 (2001), pp. 111–114.10.1016/S0921-5093(01)00998-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.