348
Views
1
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Consideration of the oxide particle–dislocation interaction in 9Cr-ODS steel

, , , , , & show all
Pages 1047-1056 | Received 17 Oct 2016, Accepted 24 Jan 2017, Published online: 28 Feb 2017

References

  • S. Ohtsuka, S. Ukai, H. Sakasegawa, M. Fujiwara, T. Kaito, and T. Narita, Nano-mesoscopic structural characterization of 9Cr-ODS martensitic steel for improving creep strength, J. Nucl. Mater. 367–370 (2007), pp. 160–165.10.1016/j.jnucmat.2007.03.004
  • T. Okuda and M. Fujiwara, Dispersion behaviour of oxide particles in mechanically alloyed ODS steel, J. Mater. Sci. Lett. 14 (1995), pp. 1600–1603.10.1007/BF00455428
  • B. Bakó, D. Weygand, M. Samaras, J. Chen, M.A. Pouchon, P. Gumbsch, and W. Hoffelner, Discrete dislocation dynamics simulations of dislocation interactions with Y2O3 particles in PM2000 single crystals, Philos. Mag. 87 (2007), pp. 3645–3656.10.1080/14786430701383085
  • Y. Xiang, D.J. Srolovitz, L.-T. Cheng, and E. Weinan, Level set simulations of dislocation-particle bypass mechanisms, Acta Metall. (2004), pp. 1745–1760.
  • K. Yashiro, A. Yamaguchi, M. Tanaka, T. Okuda, K. Koga, and T. Segi, Molecular dynamics simulation on interaction between screw dislocation and pseudo yttrium oxide in Bcc-Fe, Mater. Trans. 53 (2012), pp. 401–406.10.2320/matertrans.M2011276
  • T. Hatano, Dynamics of a dislocation bypassing an impenetrable precipitate: the Hirsch mechanism revisited, Phys. Rev. B 74 (2006), p. 020102(R).10.1103/PhysRevB.74.020102
  • YuN Osetsky and D.J. Bacon, Void and precipitate strengthening in α-iron: what can we learn from atomic-level modelling? J. Nucl. Mater. 323 (2003), pp. 268–280.10.1016/j.jnucmat.2003.08.028
  • A.J.E. Foreman and M.J. Makin, Dislocation movement through random arrays of obstacles, Philos. Mag. 14 (1966), pp. 911–924.10.1080/14786436608244762
  • U.F. Kocks, A statistical theory of flow stress and work-hardening, Philos. Mag. 13 (1966), pp. 541–566.10.1080/14786436608212647
  • R.O. Scattergood and D.J. Bacon, The effect of dislocation self-interaction on the Orowan stress, Philos. Mag. 31 (1975), pp. 179–198.10.1080/14786437508229295
  • D.J. Bacon, U.F. Kocks, and R.O. Scattergood, The effect of dislocation self-interaction on the orowan stress, Philos. Mag. 28 (1973), pp. 1241–1263.10.1080/14786437308227997
  • S.M.H. Hafez Haghighat and R. Schäublin, In situ transmission electron microscopy of the interaction between a moving dislocation and obstacles of dislocation character in pure iron, Philos. Mag. Lett. 93 (2013), pp. 575–582.10.1080/09500839.2013.822997
  • J. Malaplate, F. Mompiou, J.-L. Béchade, T.V.D. Van Den Berghe, and M. Ratti, Creep behavior of ODS materials: a study of dislocations/precipitates interactions, J. Nucl. Mater. 417 (2011), pp. 205–208.10.1016/j.jnucmat.2010.12.059
  • M. Bartsch, A. Wasilkowska, A. Czyrska-Filemonowicz, and U. Messerschmidt, Dislocation dynamics in the oxide dispersion strengthened alloy INCOLOY MA956, Mater. Sci. Eng. A 272 (1999), pp. 152–162.10.1016/S0921-5093(99)00471-2
  • D. Häussler, B. Reppich, M. Bartsch, and U. Messerschmidt, Interaction processes between dislocations and particles in the ODS nickel-base superalloy INCONEL MA 754 studied by means of in situ straining in an HVEM, Mater. Sci. Eng. A 309–310 (2001), pp. 500–504.10.1016/S0921-5093(00)01642-7
  • D. Häussler, M. Bartsch, U. Messerschmidt, and B. Reppich, HVTEM in situ observations of dislocation motion in the oxide dispersion strengthened superalloy MA 754, Acta Mater. 49 (2001), pp. 3647–3657.10.1016/S1359-6454(01)00285-3
  • K. Tougou, K. Nogiwa, K. Tachikawa, and K. Fukumoto, Tensile testing study of dynamic interactions between dislocations and precipitate in vanadium alloys, J. Nucl. Mater. 442 (2013), pp. S350–S353.10.1016/j.jnucmat.2012.10.043
  • K. Nogiwa, N. Nita, and H. Matsui, Quantitative analysis of the dependence of hardening on copper precipitate diameter and density in Fe–Cu alloys, J. Nucl. Mater. 367–370 (2007), pp. 392–398.10.1016/j.jnucmat.2007.03.123
  • B. Reppich, On the attractive particle–dislocation interaction in dispersion-strengthened material, Acta Mater. 46 (1998), pp. 61–67.10.1016/S1359-6454(97)00234-6
  • Y. Ijiri, N. Oono, S. Ukai, S. Ohtsuka, T. Kaito, and Y. Matsukawa, Oxide particle–dislocation interaction in 9Cr-ODS steel, Nucl. Mater. Energy 9 (2016), pp. 378–382.10.1016/j.nme.2016.06.014
  • K. Nogiwa, The Quantitative analysis of the interaction between dislocations and irradiation defects, a doctoral thesis, Tohoku University, 2006.
  • Y. Matsukawa, Y.N. Osetsky, R.E. Stoller, and S.J. Zinkle, Mechanisms of stacking fault tetrahedra destruction by gliding dislocations in quenched gold, Philos. Mag. 88 (2008). pp. 581–597.10.1080/14786430801898644
  • P.B. Hirsch, Stage II work hardening in crystals, Can. J. Phys. 45 (1967), pp. 663–706.10.1139/p67-054
  • E. Arzt and D.S. Wilkinson, Threshold stresses for dislocation climb over hard particles: the effect of an attractive interaction, Acta Metall. 34 (1986), pp. 1893–1898.10.1016/0001-6160(86)90247-6
  • H. Gercek, Poisson’s ratio values for rocks, Int. J. Rock Mech. Min. Sci. 44 (2007), pp. 1–13.10.1016/j.ijrmms.2006.04.011
  • S. Ukai, S. Ohtsuka, T. Kaito, H. Sakasegawa, N. Chikata, S. Hayashi, and S. Ohnuki, High-temperature strength characterization of advanced 9Cr-ODS ferritic steels, Mater. Sci. Eng. A 510–511 (2009), pp. 115–120.10.1016/j.msea.2008.04.126
  • A. Yoshizawa, T. Fujita, F. Yoshida, and H. Nakashima, Dispersion hardening mechanism of Y2O3 dispersed ferritic steel at high temperature, Tetsu-to-Hagané (a Japanese journal of ISIJ) 82 (1996), pp. 865–869.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.