387
Views
8
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Nanomechanical modeling of interfaces of polyvinyl alcohol (PVA)/clay nanocomposite

, , &
Pages 1179-1208 | Received 30 Jun 2016, Accepted 06 Feb 2017, Published online: 22 Feb 2017

References

  • Y.M. Wang, M.W. Chen, and F.H. Zhou, High tensile ductility in a nanostructured metal, Nature 419 (2002), pp. 912–915.10.1038/nature01133
  • E.M. Bringa, A. Caro, Y. Wang, M. Victoria, J.M. McNaney, B.A. Remington, R.F. Smith, B.R. Torralva, and H.V. Swygenhoven, Ultrahigh strength in nanocrystalline materials under shock loading, Science 309 (2005), pp. 1838–1841.
  • G.D. Zhan, J.E. Garay, and A.K. Mukherjee, Ultralow-temperature superplasticity in nanoceramic composites, Nano Lett. 5 (2005), pp. 2593–2597.10.1021/nl0520314
  • M. Roy, J.K. Nelson, R.K. MacCrone, L.S. Schadler, C.W. Reed, R. Keefe, and W. Zenger, Polymer nanocomposite dielectrics – the role of the interface, IEEE Trans. Dielectr. Electr. Insul. 12 (2005), pp. 629–643.10.1109/TDEI.2005.1511089
  • T. Traykova, C. Aparicio, M.P. Ginebra, and J.A. Planell, Bioceramics as nanomaterials, Nanomedicine 1 (2006), pp. 91–106.10.2217/17435889.1.1.91
  • P. Podsialdo, A.K. Kaushik, E.M. Aruda, A.M. Waas, B.S. Shim, J.D. Xu, H. Nandivada, B.G. Pumplin, J. Lahann, A. Ramamoorthy, and N.A. Kotov, Ultrastrong and stiff layered polymer nanocomposites, Science 318 (2007), pp. 80–83.
  • R.W. Grimes, R.J.M. Konings, and L. Edwards, Greater tolerance for nuclear materials, Nature Mater. 7 (2008), pp. 683–685.10.1038/nmat2266
  • B. Paliwal and M. Cherkaoui, Estimation of anisotropic elastic properties of nanocomposites using atomistic-continuum interphase model, Int. J. Solids Struct. 49 (2012), pp. 2424–2438.10.1016/j.ijsolstr.2012.05.004
  • B. Paliwal and M. Cherkaoui, Atomistic-continuum interphase model for effective properties of composite materials containing nano-inhomogeneities, Philos. Mag. 91 (2011), pp. 3905–3930.10.1080/14786435.2011.597361
  • J. Ingram, Y. Zhou, S. Jeelani, T. Lacy, and M.F. Horstemeyer, Effect of strain rate on tensile behavior of polypropylene and carbon nanofiber filled polypropylene, Mater. Sci. Eng. A 489 (2008), pp. 99–106.10.1016/j.msea.2008.01.010
  • A.A. Sapalidis, F.K. Katsaros, T.A. Steriotis, and N.K. Kanellopoulos, Properties of poly(vinyl alcohol)-Bentonite clay nanocomposite films in relation to polymer-clay interactions, J. Appl. Polym. Sci. 123 (2012), pp. 1812–1821.10.1002/app.v123.3
  • E.P. Giannelis, Polymer-layered silicate nanocomposites: Synthesis, properties and applications, Appl. Organomet. Chem. 12 (1998), pp. 675–680.10.1002/(ISSN)1099-0739
  • M. Alexandre and P. Dubois, Polymer-layered silicate nanocomposites-preparation properties and uses of a new class of materials, Mater. Sci. Eng. R Rep. 28 (2000), pp. 1–63.10.1016/S0927-796X(00)00012-7
  • C.W. Chiu, T.K. Huang, Y.C. Wang, B.G. Alamani, and J.J. Lin, Intercalation strategies in clay/polymer hybrids, Prog. Polym. Sci. 39 (2014), pp. 443–485.10.1016/j.progpolymsci.2013.07.002
  • P.G. Allison, R.D. Moser, M.Q. Chandler, J.A. Caminero-Rodriguez, K. Torres-Cancel, O.G. Rivera, J.R. Goodwin, E.R. Gore, and C.A.Weiss. Jr, Mechanical, thermal, and microstructural analysis of polyvinyl alcohol/montmorillonite nanocomposites, J. Nanomater. 2015 (2015), p. 291248-(9).
  • S. Pavlidou and C.D. Papaspyrides, A review on polymer–layered silicate nanocomposites, Prog. Polym. Sci. 33 (2008), pp. 1119–1198.10.1016/j.progpolymsci.2008.07.008
  • R.J. Sengwa, S. Choudhary, and S. Sankhla, Dielectric properties of montmorillonite clay filled poly(vinyl alcohol)/poly(ethylene oxide) blend nanocomposites, Compos. Sci. Technol. 70 (2010), pp. 1621–1627.10.1016/j.compscitech.2010.06.003
  • K.E. Strawhecker and E. Manias, Structure and properties of poly(vinyl alcohol)/Na+ montmorillonite nanocomposites, Chem. Mater. 12 (2000), pp. 2943–2949.10.1021/cm000506g
  • E. Knapen and D.V. Gemert, Cement hydration and microstructure formation in the presence of water-soluble polymers, Cem. Concr. Res. 39 (2009), pp. 6–13.10.1016/j.cemconres.2008.10.003
  • T.M. Piqué, H. Balzamo, and A. Vázquez, Evaluation of the hydration of portland cement modified with polyvinyl alcohol and nano clay, Key Eng. Mater. 466 (2011), pp. 47–56.10.4028/www.scientific.net/KEM.466
  • Q.Y. Soundararajah, B.S.B. Karunaratne, and R.M.G. Rajapakse, Mechanical properties of poly(vinyl alcohol) montmorillonite nanocomposites, J. Compos. Mater. 44 (2009), pp. 303–311.
  • J.H. Chang, T.G. Jang, K.J. Ihn, W.K. Lee, and G.S. Sur, Poly(vinyl alcohol) nanocomposites with different clays: Pristine clays and organoclays, J. Appl. Polym. Sci. 90 (2003), pp. 3208–3214.10.1002/(ISSN)1097-4628
  • B. Wang, Q. Wang, and L. Li, Morphology and properties of poly(vinyl alcohol)/MMT nanocomposite prepared by solid-state shear milling (S3M), J. Macromol. Sci. Part B 53 (2014), pp. 78–92.
  • H. Fischer, Polymer nanocomposites: from fundamental research to specific applications, Mater. Sci. Eng. C 23 (2003), pp. 763–772.10.1016/j.msec.2003.09.148
  • J.W. Gilman, C.L. Jackson, A.B. Morgan, and J.R. Harris, Flammability properties of polymer-layered-silicate nanocomposites. Polypropylene and polystyrene nanocomposites, Chem. Mater. 12 (2000), pp. 1866–1873.
  • I.J. Chin, T. Thurn-Albrecht, H.C. Kim, T.P. Russell, and J. Wang, On exfoliation of montmorillonite in epoxy, Polymer 42 (2001), pp. 5947–5952.10.1016/S0032-3861(00)00898-3
  • G.I. Barenblatt, The formation of equilibrium cracks during brittle fracture. General ideas and hypothesis. Axisymmetrical cracks, PPM 23 (1959), pp. 434–444.
  • D.S. Dugdale, Yielding of steel sheets containing slits, J. Mech. Phys. Solids 8 (1960), pp. 100–104.10.1016/0022-5096(60)90013-2
  • K. Gall, M.F. Horstemeyer, M.V. Schilfgaarde, and M.I. Baskes, Atomistic simulations on the tensile debonding of an aluminum–silicon interface, J. Mech. Phys. Solids 48 (2000), pp. 2183–2212.10.1016/S0022-5096(99)00086-1
  • B. Paliwal and M. Cherkaoui, An improved atomistic simulation based mixed-mode cohesive zone law considering non-planar crack growth, Int. J. Solids Struct. 50 (2013), pp. 3346–3360.10.1016/j.ijsolstr.2013.06.002
  • A.P. Awasthi, D.C. Lagoudas, and D.C. Hammerand, Modeling of graphene–polymer interfacial mechanical behavior using molecular dynamics, Modell. Simul. Mater. Sci. 17 (2009), pp. 015002-(37).
  • Y. Chen, J.Y.H. Chia, Z.C. Su, T.E. Tay, and V.B.C. Tan, Mechanical characterization of interfaces in epoxy-clay nanocomposites by molecular simulations, Polymer 54 (2013), pp. 766–773.10.1016/j.polymer.2012.11.040
  • S. Song, Y. Chen, Z. Su, C. Quan, and V.B.C. Tan, Multiscale modeling of damage progression in nylon 6/clay nanocomposites, Compos. Sci. Technol. 100 (2014), pp. 189–197.10.1016/j.compscitech.2014.06.014
  • M.F. Horstemeyer, Integrated Computational Materials Engineering (ICME) for Metals: Reinvigorating Engineering Design with Science, Wiley Press, 2012.
  • D.E. Spearot, K.I. Jacob, and D.L. McDowell, Non-local separation constitutive laws for interfaces and their relation to nanoscale simulations, Mech. Mater. 36 (2004), pp. 825–847.10.1016/j.mechmat.2003.08.002
  • V. Yamakov, E. Saether, D.R. Phillips, and E.H. Glaessgen, Molecular dynamics simulation based cohesive zone representation of intergranular fracture process in aluminum, J. Mech. Phys. Solids 54 (2006), pp. 1899–1928.
  • X.W. Zhou, N.R. Moody, R.E. Jones, J.A. Zimmerman, and E.D. Reedy, Moleculardynamics-based cohesive zone law for brittle interfacial fracture under mixed loading conditions: Effects of elastic constant mismatch, Acta Mater. 57 (2009), pp. 4671–4686.10.1016/j.actamat.2009.06.023
  • H. Krull and H. Yuan, Suggestions to the cohesive traction–separation law from atomistic simulations, Eng. Fract. Mech. 78 (2011), pp. 525–533.10.1016/j.engfracmech.2009.12.014
  • C.R. Dandekar and Y.C. Shin, Effect of porosity on the interface behavior of an Al2O3–aluminum composite: A molecular dynamics study, Compos. Sci. Technol. 71 (2011a), pp. 350–356.10.1016/j.compscitech.2010.11.029
  • Cerius2 and Discover (programs) and Discover User Guide, version 96.0/4.0.0, Molecular Simulations, Inc., San Diego, CA, (1996).
  • H. Sun, COMPASS: An ab Initio force-field optimized for condensed-phase applications – Overview with details on alkane and benzene compounds, J. Phys. Chem. B 102 (1998), pp. 7338–7364.10.1021/jp980939v
  • P. Dauber-Osguthorpe, V.A. Roberts, D.J. Osguthorpe, J. Wolff, M. Genest, and A.T. Hagler, Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system, Proteins 4 (1988), pp. 31–47.10.1002/(ISSN)1097-0134
  • H. Heinz, H. Koerner, K.L. Anderson, R.A. Vaia, and B.L. Farmer, Force field for mica-type silicates and dynamics of octadecylammonium chains grafted to montmorillonite, Chem. Mater. 17 (2005), pp. 5658–5669.10.1021/cm0509328
  • C.M. Hassan and N.A. Peppas, Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods, Adv. Polym. Sci. 153 (2000), pp. 37–65.10.1007/3-540-46414-X
  • Accelry Inc. Materials studio 5.5. Documentation.
  • A. Noorjahan and P. Choi, Thermodynamic properties of poly(vinyl alcohol) with different tacticities estimated from molecular dynamics simulation, Proteins 54 (2013), pp. 4212–4219.
  • H.J. Meirovitch, Computer simulation of self‐avoiding walks: Testing the scanning method, J. Chem. Phys. 79 (1983), pp. 502–508.10.1063/1.445549
  • D.N. Theodorou and U.W. Suter, Detailed molecular structure of a vinyl polymer glass, Macromolecules 18 (1985), pp. 1467–1478.10.1021/ma00149a018
  • M. Belmares, L.M. Blanco, W.A. Goddard, R.B. Ross, G. Caldwell, S.H. Chou, J. Pham, P.M. Olofson, and C. Thomas, Hildebrand and Hansen solubility parameters from molecular dynamics with applications to electronic nose polymer sensors, J. Comput. Chem. 25 (2004), pp. 1814–1826.10.1002/(ISSN)1096-987X
  • S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1995), pp. 1–19.10.1006/jcph.1995.1039
  • A. Needleman, An analysis of decohesion along an imperfect interface, Int. J. Fract. 42 (1988), pp. 21–40.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.