209
Views
4
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Assessing the Exact Muffin-Tin Orbitals method for the Bain path of metals

, , &
Pages 1243-1264 | Received 22 Oct 2016, Accepted 07 Feb 2017, Published online: 01 Mar 2017

References

  • P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136 B (1964), pp. 864–871.
  • W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140 (1965), pp. A1133–A1138.10.1103/PhysRev.140.A1133
  • J. Korringa, On the calculation of the energy of a Bloch wave in a metal, Physica (Amsterdam) 13 (1947), pp. 392–400.10.1016/0031-8914(47)90013-X
  • W. Kohn and N. Rostoker, Solution of the Schrodinger equation in periodic lattices with an application to metallic lithium, Phys. Rev. 94 (1954), pp. 1111–1120.10.1103/PhysRev.94.1111
  • J.C. Slater, Wave functions in a periodic potential, Phys. Rev. 51 (1937), pp. 846–851.10.1103/PhysRev.51.846
  • O.K. Andersen, Linear methods in band theory, Phys. Rev. B 12 (1975), pp. 3060–3083.10.1103/PhysRevB.12.3060
  • O.K. Andersen, J. Madsen, U.K. Poulsen, O. Jepsen, and J. Kollar, Magnetic ground state properties of transition metals, Physica A: Statistical Mechanics and its Applications 86(88) (1977), pp. 249–256.
  • H.L. Skriver, O.K. Andersen, and B. Johansson, Calculated bulk properties of the actinide metals, Phys. Rev. Lett 41(1978), pp. 42–45.
  • A.R. Mackintosh and O.K. Andersen, The electronic structure of transition metals, in Electrons at the Fermi Surface, edited by M. Springford, Cambridge University Press, Cambridge, 1980, pp. 149–216.
  • O.K. Andersen, O. Jepsen, and D. Glotsel, Canonical description of the band structures of metals, in Highlights of Condensed-Matter Theory. LXXXIX Varenna Corso, Soc. Italiana di Fisica, Bologna, 1983. pp. 59–176.
  • V.L. Moruzzi, J.F. Janak, and A.R. Williams, Calculated Electronic Properties of Metals, Pergamon, New York, 1978.
  • V.L. Moruzzi, J.F. Janak, and K. Schwarz, Calculated thermal properties of metals, Phys. Rev. B 37 (1988), pp. 790–799.10.1103/PhysRevB.37.790
  • O.K. Andersen, O. Jepsen, and M. Sob, Linearized band structure methods, in lecture notes in physics: electronic band structure and its applications, edited by M. Yussouff, ed., Springer-Verlag, Berlin, 1987, pp. 1–57.
  • H.L. Skriver, Crystal structure from one-electron theory, Phys. Rev. B 31 (1985), pp. 1909–1923.10.1103/PhysRevB.31.1909
  • L. Vitos, J. Kollár, and H.L. Skriver, Full charge-density scheme with a kinetic-energy correction: Application to ground-state properties of the 4d metals, Phys. Rev. B 55 (1997), pp. 13521–13527.10.1103/PhysRevB.55.13521
  • O.K. Andersen, Z. Pawlowska, and O. Jepsen, Illustration of the linear muffin-tin-orbital tight-binding representation: Compact orbitals and charge density in Si, Phys. Rev. B 34 (1986), pp. 5253–5269.10.1103/PhysRevB.34.5253
  • J. Kollár, L. Vitos, and H.L. Skriver, From ASA Towards the Full Potential, in Electronic structure and physical properties of solids: The uses of the LMTO method, in Lecture Notes in Physics, edited by H. Dreyssé, Springer-Verlag, Berlin, 2000, pp. 85–114.
  • O.K. Andersen, O. Jepsen, G. Krier, Exact Muffin-Tin Theory in Lectures on Methods of Electronic Structure Calculations, edited by V. Kumar, O.K. Andersen, A. Mookerjee, eds., World Scientific Publishing Co, Singapore, 1994, pp. 63–124.
  • O.K. Andersen, C. Arcangeli, R.W. Tank, T. Saha-Dasgupta, G. Krier, O. Jepsen, and I. Dasgupta, Third-generation TB-LMTO, in Tight-Binding Approach to Computational Materials Science, edited by L. Colombo, A. Gonis, and P. Turchi, eds., MRS Symposia Proceedings No. 491, Materials Research Society, Pittsburgh, PA, 1998. pp. 3–34.
  • L. Vitos, H.L. Skriver, B. Johansson, and J. Kollár, Application of the exact muffin-tin orbitals theory: the spherical cell approximation, Comput. Mater. Sci. 18 (2000), pp. 24–38.10.1016/S0927-0256(99)00098-1
  • L. Vitos, Total-energy method based on the exact muffin-tin theory, Phys. Rev. B 64 (2001), pp. 014107–14111.10.1103/PhysRevB.64.014107
  • L. Vitos, I.A. Abrikosov, and B. Johansson, Anisotropic Lattice distortions in random alloys from first-principles theory, Phys. Rev. Lett. 87 (2001), pp. 156401–156404.10.1103/PhysRevLett.87.156401
  • L. Vitos, The EMTO Method and Applications, Computational Quantum Mechanics for Materials Engineers, Springer-Verlag, London, 2007.
  • P. Olsson, I.A. Abrikosov, L. Vitos, and J. Wallenius, Ab initio formation energies of Fe–Cr alloys, J. Nucl. Mater. 321 (2003), pp. 84–90.10.1016/S0022-3115(03)00207-1
  • L. Dubrovinsky, N. Dubrovinskaia, F. Langenhorst, D. Dobson, D. Rubie, C. Geßmann, I.A. Abrikosov, B. Johansson, V.L. Baykov, L. Vitos, T. Le Bihan, W.A. Crichton, V. Dmitriev, and H.-P. Weber, Iron–silica interaction at extreme conditions and the electrically conducting layer at the base of Earth’s mantle, Nature 422 (2003), pp. 58–61.10.1038/nature01422
  • L. Vitos, P.A. Korzhavyi, and B. Johansson, Evidence of large magnetostructural effects in austenitic stainless steels, Phys. Rev. Lett. 96 (2006), p. 117210.10.1103/PhysRevLett.96.117210
  • N. Dubrovinskaia, L. Dubrovinsky, I. Kantor, W.A. Crichton, V. Dmitriev, V. Prakapenka, G. Shen, L. Vitos, R. Ahuja, B. Johansson, and I.A. Abrikosov, Beating the miscibility barrier between iron group elements and magnesium by high-pressure alloying, Phys. Rev. Lett. 95 (2005), p. 245502.10.1103/PhysRevLett.95.245502
  • A. Taga, L. Vitos, B. Johansson, and G. Grimvall, Ab initio calculation of the elastic properties of Al1−xLix (x≤0.20) random alloys, Phys. Rev. B 71 (2005), p. 014201.10.1103/PhysRevB.71.014201
  • L. Huang, L. Vitos, S.K. Kwon, B. Johansson, and R. Ahuja, Thermoelastic properties of random alloys from first-principles theory, Phys. Rev. B 73 (2006), pp. 104203-1–4.10.1103/PhysRevB.73.104203
  • B. Magyari-Köpe, L. Vitos, B. Johansson, and J. Kollár, High-pressure structure of ScAlO3 perovskite, J. Geophys. Res. 107 (2002), pp. 2136-1–6.
  • A. Landa, C.-C. Chang, P.N. Kumta, L. Vitos, and I.A. Abrikosov, Phase Stability of Li(Mn(100-x)Cox): an Ab Initio Study, Solid State Ionics 149 (2002), pp. 209–215.10.1016/S0167-2738(02)00403-4
  • B. Magyari-Köpe, L. Vitos, G. Grimvall, B. Johansson, and J. Kollár, Low-temperature crystal structure of CaSiO3 perovskite: An ab initio total energy study, Phys. Rev. B 65 (2002), pp. 193107-1–4.10.1103/PhysRevB.65.193107
  • B. Magyari-Köpe, L. Vitos, B. Johansson, and J. Kollár, Parametrization of perovskite structures: An ab initio study, Acta Crystallogr. Sect. B Struct. Sci. 57 (2001), pp. 491–496.10.1107/S010876810100893X
  • M. Zwierzycki and O.K. Andersen, The overlapping muffin-tin approximation, Acta Phys. Pol. A 115 (2009), pp. 64–68.10.12693/APhysPolA.115.64
  • E.C. Bain and N.Y. Dunkirk, The nature of martensite, Trans. Am. Inst. Min. Metall. Eng. 70 (1924), pp. 25–46.
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996), pp. 3865–3868.10.1103/PhysRevLett.77.3865
  • M.J. Mehl, A. Aguayo, L.L. Boyer, Absence of metastable states in strained monatomic cubic crystals, Phys. Rev. B (2004), p. 014105.10.1103/PhysRevB.70.014105
  • V.L. Sliwko, P. Mohn, K. Schwarz, and P. Blaha, The fcc – bcc structural transition: I. A band theoretical study for Li, K, Rb, Ca, Sr, and the transition metals Ti and V, J. Phys. Condens. Matter. 8 (1996), pp. 799–815.
  • L.G. Wang, M. Šob, and Z. Zhang, Instability of higher-energy phases in simple and transition metals, J. Phys. Chem. Solids 64 (2003), pp. 863–872.10.1016/S0022-3697(02)00420-1
  • O.K. Andersen, A.V. Postnikov, and S.Y. Savrasov, The muffin-tin-orbital point of view, in Applications of multiple scattering theory in materials science, edited by  W.H. Butler, P.H. Dederichs, A. Gonis, and R.L. Weaver, Materials Research Society, Pittsburgh, PA, 1992, pp. 37–70.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.