256
Views
3
CrossRef citations to date
0
Altmetric
Part A: Materials Science

The effect of the location of stage-I fatigue crack across the persistent slip band on its growth rate – A 3D dislocation dynamics study

, , , , &
Pages 1265-1280 | Received 27 Oct 2016, Accepted 07 Feb 2017, Published online: 05 Mar 2017

References

  • J. Man, T. Vystavěl, A. Weidner, I. Kuběna, M. Petrenec, T. Kruml, and J. Polák, Study of cyclic strain localization and fatigue crack initiation using FIB technique, Int. J. Fatigue 39 (2012), pp. 44–53.10.1016/j.ijfatigue.2011.05.002
  • B.T. Ma and C. Laird, Overview of fatigue behaviour in copper single crystals – I. Surface morphology and stage I crack initiation sites for tests at constant strain amplitude, Acta Metall. 37 (1989), pp. 325–336.
  • J. Ahmed, A.J. Wilkinson, and S.G. Roberts, Study of dislocation structures near fatigue cracks using electron channeling contrast imaging technique (ECCI), J. Microsc. 195 (1999), pp. 197–203.10.1046/j.1365-2818.1999.00574.x
  • J. Ahmed, A.J. Wilkinson, and S.G. Roberts, Electron channelling contrast imaging characterization of dislocation structures associated with extrusion and intrusion systems and fatigue cracks in copper single crystals, Philos. Mag. A 81 (2001), pp. 1473–1488.10.1080/01418610108214358
  • J. Man, K. Obrtlík, and J. Polák, Extrusions and intrusions in fatigued metals. Part 1. State of the art and history, Philos. Mag. 89 (2009), pp. 1295–1336.10.1080/14786430902917616
  • J. Man, P. Klapetek, O. Man, A. Weidner, K. Obrtlík, and J. Polák, Extrusions and intrusions in fatigued metals. Part 2. AFM and EBSD study of the early growth of extrusions and intrusions in 316L steel fatigued at room temperature, Philos. Mag. 89 (2009), pp. 1337–1372.10.1080/14786430902917624
  • K. Katagiri, A. Omura, K. Koyanagi, J. Awatani, T. Shiraishi, and H. Kaneshiro, Early stage crack tip dislocation morphology in fatigued copper, Metall. Trans. A 8 (1977), pp. 1769–1773.10.1007/BF02646881
  • C. Déprés, G.V. Prasad Reddy, C. Robertson, and M. Fivel, An extensive 3D dislocation dynamics investigation of stage-I fatigue crack propagation, Philos. Mag. 94 (2014), pp. 4115–4137.10.1080/14786435.2014.978830
  • M. Verdier, M. Fivel, and I. Groma, Mesoscopic scale simulation of dislocation dynamic in fcc metals: Principle and applications, Model. Simul. Mater. Sci. Eng. 6 (1998), pp. 755–770.10.1088/0965-0393/6/6/007
  • C. Déprés, C.F. Robertson, and M.C. Fivel, Low-strain fatigue in 316L steel surface grains: a three dimension discrete dislocation dynamics modelling of the early cycles. Part 1: Dislocation microstructures and mechanical behavior, Philos. Mag. 84 (2004), pp. 2257–2275.10.1080/14786430410001690051
  • C. Déprés, C.F. Robertson, and M.C. Fivel, Low-strain fatigue in 316L steel surface grains: a three dimension discrete dislocation dynamics modelling of the early cycles. Part 2: Persistent slip markings and micro-crack nucleation, Philos. Mag. 86 (2006), pp. 79–97.10.1080/14786430500341250
  • C. Robertson, M.C. Fivel, and A. Fissolo, Dislocation substructure in 316L stainless steel under thermal fatigue up to 650 K, Mater. Sci. Eng. A 315 (2001), pp. 47–57.10.1016/S0921-5093(01)01201-1
  • S. Suresh, Fatigue of Materials, 2nd ed., Cambridge University Press, Cambridge, 1998.10.1017/CBO9780511806575
  • D.M. Barnett, The displacement field of a triangular dislocation loop, Philos. Mag. A 51 (1985), pp. 383–387.10.1080/01418618508237562
  • M. Fivel and C. Depres, An easy implementation of displacement calculations in 3D discrete dislocation dynamics codes, Philos. Mag. 94 (2014), pp. 3206–3214.10.1080/14786435.2014.949326
  • M. Marx, W. Schäf, and H. Vehoff, Influence of grain boundaries on short fatigue crack growth in polycrystalline CMSX-4, Adv. Mater. Res. 278 (2011), pp. 333–338.10.4028/www.scientific.net/AMR.278
  • J. Petit, Near-threshold fatigue crack path in Al–Zn–Mg alloys, Fatigue Fract. Eng. Mater. Struct. 28 (2005), pp. 149–158.
  • J. Man, M. Petrenec, K. Obrtlík, and J. Polák, AFM and TEM study of cyclic slip localization in fatigued ferritic X10CrAl24 stainless steel, Acta Mater. 52 (2004), pp. 5551–5561.10.1016/j.actamat.2004.08.014
  • B. Künkler, O. Düber, P. Köster, U. Krupp, C.P. Fritzen, and H.J. Christ, Modelling of short crack propagation – Transition from stage I to stage II, Eng. Fract. Mech. 75 (2008), pp. 715–725.10.1016/j.engfracmech.2007.02.018
  • P. Hansson and S. Melin, Simulation of simplified zigzag crack paths emerging during fatigue crack growth, Eng. Fract. Mech. 75 (2008), pp. 1400–1411.
  • F.O. Riemelmoser, R. Pippan, and H.P. Stüwe, An argument for a cycle-by-cycle propagation of fatigue cracks at small stress intensity ranges, Acta Mater. 46 (1998), pp. 1793–1799.10.1016/S1359-6454(97)00366-2
  • G.V. Prasad Reddy, C. Robertson, C. Déprés, and M. Fivel, Effect of grain disorientation on early fatigue crack propagation in face-centred-cubic polycrystals: A three-dimensional dislocation dynamics investigation, Acta Mater. 61 (2013), pp. 5300–5310.10.1016/j.actamat.2013.05.021
  • A. Navarro and E.R. De los Rios, Short and long fatigue crack growth: A unified model, Philos. Mag. A 57 (1988), pp. 15–36.
  • J. Man, M. Valtr, M. Petrenec, J. Dluhoš, I. Kuběna, K. Obrtlík, and J. Polák, AFM and SEM-FEG study on fundamental mechanisms leading to fatigue crack initiation, Int. J. Fatigue 76 (2015), pp. 11–18.10.1016/j.ijfatigue.2014.09.019
  • J. Polák, V. Mazánová, I. Kuběna, M. Heczko, and J. Man, Surface relief and internal structure in fatigued stainless Sanicro 25 steel, Metall. Mater. Trans. A 47 (2016), pp. 1907–1911.10.1007/s11661-016-3374-1
  • J. Polák, R. Petráš, G. Chai, and V. Škorík, Surface profile evolution and fatigue crack initiation in Sanicro 25 steel at room temperature, Mater. Sci. Eng. A 658 (2016), pp. 221–228.10.1016/j.msea.2016.02.016
  • J. Polák, On the role of point defects in fatigue crack initiation, Mater. Sci. Eng. 92 (1987), pp. 71–80.10.1016/0025-5416(87)90157-1
  • J. Polák and J. Man, Mechanisms of extrusion and intrusion formation in fatigued crystalline materials, Mater. Sci. Eng. A 596 (2014), pp. 15–24.10.1016/j.msea.2013.12.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.