693
Views
15
CrossRef citations to date
0
Altmetric
Part A: Materials Science

First-principles calculations on slip system activation in the rock salt structure: electronic origin of ductility in silver chloride

, , , , &
Pages 1281-1310 | Received 09 Sep 2016, Accepted 07 Feb 2017, Published online: 21 Feb 2017

References

  • J.P. Hirth and J. Lothe, Theory of dislocations, 2nd ed., Willey, New York, 1982.
  • T. Suzuki and S. Takeuchi, Deformation of crystals controlled by the Peierls mechanism of the smooth kink regime, in Crystal Lattice Defects and Dislocation Dynamics, R.A. Vardanian, eds., Nova Science Pub., New York, 2001, pp. 1–70.
  • C.M. Van Der Walt and M.J. Sole, On the plastic behaviour of crystals with the NaCl-structure, Acta Metall. 15 (1967), pp. 459–462.10.1016/0001-6160(67)90076-4
  • J.F. Nye, Plastic deformation of silver chloride. I. Internal stresses and the glide mechanism, Proc. Royal Soc. A 198 (1949), pp. 190–204.
  • F. Vávra, Etch pits in AgCl crystals, Czech. J. Phys. 19 (1969), pp. 776–782.10.1007/BF01697133
  • F. Vávra and Z. Ševčík, Formation of wavy slip bands in AgCl crystals at low temperatures, Czech. J. Phys. 36 (1986), pp. 509–513.10.1007/BF01597632
  • V. Vítek, Intrinsic stacking faults in body-centred cubic crystals, Phil. Mag. 18 (1968), pp. 773–786.10.1080/14786436808227500
  • N. De Leon, X. Yu, H. Yu, C.R. Weinberger, and G.B. Thompson, Bonding effects on the slip differences in the B1 monocarbides, Phys. Rev. Lett. 114 (2015), p. 165502.10.1103/PhysRevLett.114.165502
  • R. Peierls, The size of a dislocation, Proc. Phys. Soc. 52 (1940), pp. 34–37.10.1088/0959-5309/52/1/305
  • F.R.N. Nabarro, Dislocations in a simple cubic lattice, Proc. Phys. Soc. 59 (1947), pp. 256–272.10.1088/0959-5309/59/2/309
  • R. Dronskowski and P.E. Bloechl, Crystal orbital Hamilton populations (COHP): Energy-resolved visualization of chemical bonding in solids based on density-functional calculations, J. Phys. Chem. 97 (1993), pp. 8617–8624.10.1021/j100135a014
  • G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996), p. 11169.10.1103/PhysRevB.54.11169
  • P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (1994), p. 17953.10.1103/PhysRevB.50.17953
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996), p. 3865.10.1103/PhysRevLett.77.3865
  • V.L. Deringer, A.L. Tchougréeff, and R. Dronskowski, Crystal Orbital Hamilton Population (COHP) analysis as projected from plane-wave basis sets, J. Phys. Chem. A 115 (2011), pp. 5461–5466.
  • S. Maintz, V.L. Deringer, A.L. Tchougréeff, and R. Dronskowski, Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids, J. Comput. Chem. 34 (2013), pp. 2557–2567.10.1002/jcc.v34.29
  • M. Bruno, D. Aquilano, L. Pastero, and M. Prencipe, Structures and surface energies of (1 0 0) and octopolar (1 1 1) faces of halite (NaCl): An Ab initio quantum-mechanical and thermodynamical study, Crys. Growth Des. 8 (2008), pp. 2163–2170.10.1021/cg8000027
  • M. Bruno, D. Aquilano, and M. Prencipe, Quantum-mechanical and thermodynamical study on the (1 1 0) and reconstructed (1 1 1) faces of NaCl crystals, Crys. Growth Des. 9 (2009), pp. 1912–1916.10.1021/cg801144x
  • L. Liu, X.Z. Wu, R. Wang, H.F. Feng, and S. Wu, On the generalized stacking energy, core structure and Peierls stress of the dislocations in alkali halide, Eur. Phys. J. B 85 (2012), p. 58.10.1140/epjb/e2011-20767-7
  • B. Joós and M.S. Duesbery, The Peierls stress of dislocations: An analytic formula, Phys. Rev. Lett. 78 (1997), pp. 266–269.10.1103/PhysRevLett.78.266
  • Y. Li, L. Zhang, T. Cui, Y. Ma, G. Zou, and D.D. Klug, Phonon instabilities in rocksalt AgCl and AgBr under pressure studied within density functional theory, Phys. Rev. B 74 (2006), p. 054102.10.1103/PhysRevB.74.054102
  • Y. Kamimura, K. Edagawa, and S. Takeuchi, Experimental evaluation of the Peierls stresses in a variety of crystals and their relation to the crystal structure, Acta Mater. 61 (2013), pp. 294–309.10.1016/j.actamat.2012.09.059

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.