377
Views
9
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Atomistic study on shock behaviour of NiTi shape memory alloy

, &
Pages 1311-1333 | Received 20 Oct 2016, Accepted 09 Feb 2017, Published online: 21 Feb 2017

References

  • K. Otsuka and C.M. Wayman, Shape Memory Materials, Cambridge University Press, Cambridge, 1998.
  • D. Tw, Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann, London, 1990.
  • K. Bhattacharya, Microstructure of Martensite, Why it Forms and How it Gives Rise to the Shape-memory Effect, Oxford University Press, Oxford, 2003.
  • L. McDonald Schetky, Shape memory alloy applications in space systems, Mater. Des. 12 (1991), pp. 29–32.
  • A. Biesiekierski, J. Wang, M. Abdel-Hady Gepreel, and C. Wen, A New Look at Biomedical Ti-based Shape Memory Alloys, Acta Biomater. 8 (2012), pp. 1661–1669.
  • A. Pequegnat, M. Daly, J. Wang, Y. Zhou, and M.I. Khan, Dynamic actuation of a novel laser-processed NiTi linear actuator, Smart Mater. Struct. 21 (2012), p. 094004.10.1088/0964-1726/21/9/094004
  • S. Nemat-Nasser and W.-G. Guo, Superelastic and cyclic response of NiTi SMA at various strain rates and temperatures, Mech. Mater. 38 (2006), pp. 463–474.10.1016/j.mechmat.2005.07.004
  • N. Zotov, V. Marzynkevitsch, and E.J. Mittemeijer, Evaluation of kinetic equations describing the martensite–austenite phase transformation in NiTi shape memory alloys, J. Alloys Compd. 616 (2014), pp. 385–393.10.1016/j.jallcom.2014.07.148
  • Y. Liu, Y. Li, K.T. Ramesh, and J. Van Humbeeck, High strain rate deformation of martensitic NiTi shape memory alloy, Scr. Mater. 41 (1999), pp. 89–95.10.1016/S1359-6462(99)00058-5
  • X. Wang, Y. Bellouard, and J.J. Vlassak, Laser annealing of amorphous NiTi shape memory alloy thin films to locally induce shape memory properties, Acta Mater. 53 (2005), pp. 4955–4961.10.1016/j.actamat.2005.07.022
  • D. Gunderov, A. Lukyanov, E. Prokofiev, A. Kilmametov, V. Pushin, and R. Valiev, Mechanical properties and martensitic transformations in nanocrystalline Ti49.4Ni50.6 alloy produced by high-pressure torsion, Mater. Sci. Eng. A 503 (2009), pp. 75–77.10.1016/j.msea.2008.08.044
  • T. Simon, A. Kröger, C. Somsen, A. Dlouhy, and G. Eggeler, On the multiplication of dislocations during martensitic transformations in NiTi shape memory alloys, Acta Mater. 58 (2010), pp. 1850–1860.10.1016/j.actamat.2009.11.028
  • W.W. Chen, Q. Wu, J.H. Kang, and N.A. Winfree, Compressive superelastic behavior of a NiTi shape memory alloy at strain rates of 0.001–750 s−1, Int. J. Solids Struct. 38 (2001), pp. 8989–8998.10.1016/S0020-7683(01)00165-2
  • J.P.L. McDonald Schetky, The ‘quiet’ alloys, in Machine Design, 1978, pp. 202–206.
  • S. Nemat-Nasser, J.-Y. Choi, W.-G. Guo, and J.B. Isaacs, Very high strain-rate response of a NiTi shape-memory alloy, Mech. Mater. 37 (2005), pp. 287–298.10.1016/j.mechmat.2004.03.007
  • Y. Liao, C. Ye, D. Lin, S. Suslov, and G.J. Cheng, Deformation induced martensite in NiTi and its shape memory effects generated by low temperature laser shock peening, J. Appl. Phys. 112 (2012), p. 033515.10.1063/1.4742997
  • Y. Zhong, K. Gall, and T. Zhu, Atomistic characterization of pseudoelasticity and shape memory in NiTi nanopillars, Acta Mater. 60 (2012), pp. 6301–6311.10.1016/j.actamat.2012.08.004
  • C.D. Wu, P.H. Sung, and T.H. Fang, Study of deformation and shape recovery of NiTi nanowires under torsion, J. Mol. Model. 19 (2013), pp. 1883–1890.10.1007/s00894-013-1752-9
  • T. Sato, K.-I. Saitoh, and N. Shinke, Molecular dynamics study on microscopic mechanism for phase transformation of Ni–Ti alloy, Modell. Simul. Mater. Sci. Eng. 14 (2006), pp. S39–S46.10.1088/0965-0393/14/5/S05
  • D. Mutter and P. Nielaba, Simulation of the thermally induced austenitic phase transition in NiTi nanoparticles, Eur. Phys. J. B 84 (2011), pp. 109–113.10.1140/epjb/e2011-20661-4
  • Y. Zhong, K. Gall, and T. Zhu, Atomistic study of nanotwins in NiTi shape memory alloys, J. Appl. Phys. 110 (2011), p. 033532.10.1063/1.3621429
  • Q. Yin, X. Wu, C. Huang, X. Wang, and Y. Wei, Atomistic study of temperature and strain rate-dependent phase transformation behaviour of NiTi shape memory alloy under uniaxial compression, Philos. Mag. 95 (2015), pp. 2491–2512.10.1080/14786435.2015.1065018
  • S. Nemat-Nasser, Y. Su, W.-G. Guo, and J. Isaacs, Experimental characterization and micromechanical modeling of superelastic response of a porous NiTi shape-memory alloy, J. Mech. Phys. Solids 53 (2005), pp. 2320–2346.10.1016/j.jmps.2005.03.009
  • S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1995), pp. 1–19.10.1006/jcph.1995.1039
  • W.S. Lai and B.X. Liu, Lattice stability of some Ni-Ti alloy phases versus their chemical composition and disordering, J. Phys.: Conden. Matter 12 (2000), p. L53.
  • W.G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A 31 (1985), pp. 1695–1697.10.1103/PhysRevA.31.1695
  • F. Yuan and X. Wu, Shock response of nanotwinned copper from large-scale molecular dynamics simulations, Phys. Rev. B 86 (2012), p. 134108.
  • F. Daniel and J. Hannes, Systematic analysis of local atomic strucure combined with 3D computer graphics, Comput. Mater. Sci. 2 (1994), pp. 279–286.
  • H. Tsuzuki, P.S. Branicio, and J.P. Rino, Structural characterization of deformed crystals by analysis of common atomic neighborhood, Comput. Phys. Commun. 177 (2007), pp. 518–523.10.1016/j.cpc.2007.05.018
  • T.M. Brill, S. Mittelbach, W. Assmus, M. Mullner, and B. Luthi, Elastic properties of NiTi, J. Phys. Condens. Matter 3 (1991), pp. 9621–9627.
  • N. Hatcher, O.Y. Kontsevoi, and A.J. Freeman, Role of elastic and shear stabilities in the martensitic transformation path of NiTi, Phys. Rev. B 80 (2009), p. 144203.10.1103/PhysRevB.80.144203
  • M.F.X. Wagner and W. Windl, Lattice stability, elastic constants and macroscopic moduli of NiTi martensites from first principles, Acta Mater. 56 (2008), pp. 6232–6245.10.1016/j.actamat.2008.08.043
  • X. Huang, G.J. Ackland, and K.M. Rabe, Crystal structures and shape-memory behaviour of NiTi, Nat. Mater. 2 (2003), pp. 307–311.10.1038/nmat884
  • A.P. Stebner, D.W. Brown, and L.C. Brinson, Measurement of elastic constants of monoclinic nickel-titanium and validation of first principles calculations, Appl. Phys. Lett. 102 (2013), p. 211908.10.1063/1.4808040
  • X. Ren and K. Otsuka, The role of softening in elastic constant c44 in martensitic transformation, Scr. Mater. 38 (1998), pp. 1669–1675.10.1016/S1359-6462(98)00078-5
  • T. Onda, Y. Bando, T. Ohba, and K. Otsuka, Electron microscopy study of twins in martensite in a Ti-50.0 at%Ni alloy, Mater. Trans., JIM 33 (1992), pp. 354–359.
  • J.X. Zhang, M. Sato, and A. Ishida, Deformation mechanism of martensite in Ti-rich Ti–Ni shape memory alloy thin films, Acta Mater. 54 (2006), pp. 1185–1198.10.1016/j.actamat.2005.10.046
  • T. Ezaz, H. Sehitoglu, and H.J. Maier, Energetics of twinning in martensitic NiTi, Acta Mater. 59 (2011), pp. 5893–5904.10.1016/j.actamat.2011.05.063
  • S. Miyazaki, Y. Igo, and K. Otsuka, Effect of thermal cycling on the transformation temperatures of Ti•Ni alloys, Acta Metall. 34 (1986), pp. 2045–2051.10.1016/0001-6160(86)90263-4
  • A. Ibarra, J. San Juan, E.H. Bocanegra, and M.L. Nó, Evolution of microstructure and thermomechanical properties during superelastic compression cycling in Cu–Al–Ni single crystals, Acta Mater. 55 (2007), pp. 4789–4798.10.1016/j.actamat.2007.05.012
  • R. Mirzaeifar, K. Gall, T. Zhu, A. Yavari, and R. DesRoches, Structural transformations in NiTi shape memory alloy nanowires, J. Appl. Phys. 115 (2014), p. 194307.10.1063/1.4876715
  • D.M. Norfleet, P.M. Sarosi, S. Manchiraju, M.F.X. Wagner, M.D. Uchic, P.M. Anderson, and M.J. Mills, Transformation-induced plasticity during pseudoelastic deformation in Ni–Ti microcrystals, Acta Mater. 57 (2009), pp. 3549–3561.10.1016/j.actamat.2009.04.009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.