222
Views
7
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Fine-tuning the Mott metal–insulator transition and critical charge carrier dynamics in molecular conductors

, &
Pages 3477-3494 | Received 01 Jul 2016, Accepted 12 Feb 2017, Published online: 09 Mar 2017

References

  • M. Imada, A. Fujimori, and Y. Tokura, Metal-insulator transitions, Rev. Mod. Phys. 70 (1998), pp. 1039–1263.
  • A. Georges, S. Florens, and T.A. Costi, The Mott transition: Unconventional transport, spectral weight transfers, and critical behaviour, J. Phys. IV France 114 (2004), pp. 165–173.
  • N. Toyota, M. Lang, and J. Müller, Low-Dimensional Molecular Metals, Springer, Berlin, 2007.
  • K. Kanoda, Mott transition and superconductivity in Q2D organic conductors, in The Physics of Organic Superconductors and Conductors, A. Lebed,ed., Springer, Berlin, 2008.
  • B.J. Powell and R.H. McKenzie, Quantum frustration in organic Mott insulators: From spin liquids to unconventional superconductors, Rep. Prog. Phys. 74 (2011), p. 056501.
  • F. Kagawa, K. Miyagawa, and K. Kanoda, Magnetic Mott criticality in a uc0u954 -type organic salt probed by NMR, Nat. Phys. 5 (2009), pp. 880–884.
  • P. Lunkenheimer, J. Müller, S. Krohns, F. Schrettle, A. Loidl, B. Hartmann, R. Rommel, M. de Souza, C. Hotta, J.A. Schlueter, and M. Lang, Multiferroicity in an organic charge-transfer salt that is suggestive of electric-dipole-driven magnetism, Nat. Mat. 11 (2012), pp. 755–758.
  • T. Furukawa, K. Miyagawa, H. Taniguchi, R. Kato, and K. Kanoda, Quantum criticality of Mott transition in organic materials, Nat. Phys. 11 (2015), pp. 221–224.
  • T. Furukawa, K. Miyagawa, T. Itou, M. Ito, H. Taniguchi, M. Saito, S. Iguchi, T. Sasaki, and K. Kanoda, Quantum spin liquid emerging from antiferromagnetic order by introducing disorder, Phys. Rev. Lett. 115 (2015), p. 077001.
  • B. Lenz, S.R. Manmana, T. Pruschke, F.F. Assaad, and M. Raczkowski, Mott quantum criticality in the anisotropic 2D Hubbard model, Phys. Rev. Lett. 116 (2016), p. 086403.
  • D. Guterding, S. Diehl, M. Altmeyer, T. Methfessel, U. Tutsch, H. Schubert, M. Lang, J. Müller, M. Huth, H.O. Jeschke, R. Valenti, M. Jourdan, and H.-J. Elmers, Evidence for eight-node mixed-symmetry superconductivity in a correlated organic metal, Phys. Rev. Lett. 116 (2016), p. 327001.
  • E. Gati, M. Garst, R.S. Manna, U. Tutsch, B. Wolf, L. Bartosch, H. Schubert, T. Sasaki, J.A. Schlueter, and M. Lang, Breakdown of Hooke’s law of elasticity at the Mott critical endpoint in an organic conductor, Sci. Adv. 2 (2016), p. e1601646.
  • K. Kanoda, Recent progress in NMR studies on organic conductors, Hyperfine Interact 104 (1997), pp. 235–249.
  • A. Kawamoto, K. Miyagawa, and K. Kanoda, Deuterated κ-(BEDT-TTF)2Cu[N(CN)2]Br: A system on the border of the superconductor-magnetic-insulator transition, Phys. Rev. B 55 (1997), pp. 14140–14143.
  • N. Yoneyama, T. Sasaki, and T. Nishizaki, and N, Kobayashi, Disorder effect on the vortex pinning by the cooling-process control in the organic superconductor κ-(BEDT-TTF)2Cu[N(CN)2Br, J. Phys. Soc. Jpn. 73 (2004), pp. 184–189.
  • T. Sasaki, N. Yoneyama, A. Suzuki, N. Kobayashi, Y. Ikemoto, and H. Kimura, Real space imaging of the metal-insulator phase separation in the band width controlled organic Mott system κ-(BEDT-TTF)2Cu[N(CN)2]Br, J. Phys. Soc. Jpn. 74 (2005), pp. 2351–2360.
  • H. Taniguchi, K. Kanoda, and A. Kawamoto, Field switching of superconductor-insulator bistability in artificially tuned organics, Phys. Rev. B 67 (2003), p. 014510.
  • O.J. Taylor, A. Carrington, and J.A. Schlueter, Superconductor-insulator phase separation induced by rapid cooling of κ-(BEDT-TTF)2Cu[N(CN)2]Br, Phys. Rev. B 77 (2008), p. 060503(R).
  • D. Guterding, R. Valenti, and H.O. Jeschke, Influence of molecular conformations on the electronic structure of organic charge transfer salts, Phys. Rev. B 92 (2015), p. 081109(R).
  • J. Müller, B. Hartmann, R. Rommel, J. Brandenburg, S.M. Winter, and J.A. Schlueter, Origin of the glass-like dynamics in molecular metals κ-(BEDT-TTF)2X: Implications from fluctuation spectroscopy and ab initio calculations, New J. Phys. 17 (2015), p. 083057.
  • K. Saito, H. Akutsu, and M. Sorai, Glass transition in the organic superconductor with the highest Tc under ambient pressure, κ-(ET)2Cu[N(CN)2]Br, Solid State Commun. 111 (1999), pp. 471–475.
  • H. Akutsu, K. Saito, and M. Sorai, Phase behavior of the organic superconductors κ-(BEDT-TTF)2Cu[N(CN)2]X (X=Br and Cl) studied by ac calorimetry, Phys. Rev. B 61 (2000), pp. 4346–4352.
  • J. Müller, M. Lang, F. Steglich, J.A. Schlueter, A.M. Kini, and T. Sasaki, Evidence for structural and electronic instabilities at intermediate temperatures in κ-(BEDT-TTF)2X for X=Cu[N(CN)2]Cl, Cu[N(CN)2]Br and Cu(NCS)2: Implications for the phase diagram of these quasi-two-dimensional organic superconductors, Phys. Rev. B 65 (2002), p. 144521.
  • J. Müller, M. Lang, F. Steglich, and J.A. Schlueter, Glass-like transition in κ-(ET)2Cu[N(CN)2] Br at Tg K - implications for the superconducting ground-state properties, J. Phy. IV (France) 114 (2004), pp. 341–342.
  • B. Hartmann, T. Sasaki, and J. Müller, Mott metal-insulator transition induced by utilizing a glasslike structural ordering in low-dimensional molecular conductors, Phys. Rev. B 90 (2014), p. 195150.
  • J. Müller, J. Brandenburg, and J.A. Schlueter, 1/f noise in the quasi-two-dimensional organic conductor κ-(BEDT-TTF)2Cu[N(CN)2]Cl, Phys. Rev. B 79 (2009), p. 214521.
  • J. Brandenburg, J. Müller, and J.A. Schlueter, Sudden slowing down of charge carrier dynamics at the Mott metal-insulator transition in kappa-(D8-BEDT-TTF)2Cu[N(CN)2]Br, New J. Phys. 14 (2012), p. 023033.
  • X. Su, F. Zuo, J.A. Schlueter, M.E. Kelly, and J.M. Williams, Structural disorder and its effect on the superconducting transition temperature in the organic superconductor κ-(BEDT-TTF)2Cu[N(CN)2]Br, Phys. Rev. B 57 (1998), pp. 14056(R)–14059(R).
  • X. Su, F. Zuo, J.A. Schlueter, A.M. Kini, and J.M. Williams, 80 K anomaly and its effect on the superconducting and magnetic transition in deuterated κ-(BEDT-TTF)2Cu[N(CN)2]Br, Phys. Rev. B 58 (1998), pp. 2944(R)–2947(R).
  • B.J. Powell and R.H. McKenzie, Dependence of the superconducting transition temperature of organic molecular crystals on intrinsically nonmagnetic disorder: A signature of either unconventional superconductivity or the atypical formation of magnetic moments, Phys. Rev. B 69 (2004), p. 024519.
  • J.G. Analytis, A. Ardavan, S.J. Blundell, R.L. Owen, E.F. Garman, C. Jeynes, and B.J. Powell, Effect of irradiation-induced disorder on the conductivity and critical temperature of the organic superconductor κ-(BEDT-TTF)2 Cu(SCN)2, Phys. Rev. Lett. 96 (2006), p. 177002.
  • K. Sano, T. Sasaki, N. Yoneyama, and N. Kobayashi, Electron localization near the mott transition in the organic superconductor κ-(BEDT-TTF)2Cu[N(CN)2]Br, Phys. Rev. Lett. 104 (2010), p. 217003.
  • T. Sasaki, Mott-Anderson transition in molecular conductors: Influence of randomness on strongly correlated electrons in the κ-(BEDT-TTF)2X system, Crystals 2 (2012), pp. 374–392.
  • F. Kagawa, K. Miyagawa, and K. Kanoda, Unconventional critical behaviour in a quasi-two-dimensional organic conductor, Nature 436 (2005), pp. 534–537.
  • M. de Souza, A. Br"uhl, Ch. Strack, B. Wolf, D. Schweitzer, and M. Lang, Anomalous lattice response at the Mott transition in a quasi-2D organic conductor, Phys. Rev. Lett. 99 (2007), p. 037003.
  • S. Papanikolaou, R.M. Fernandes, E. Fradkin, P.W. Phillips, J. Schmalian, and R. Sknepnek, Universality of liquid-gas mott transitions at finite temperatures, Phys. Rev. Lett. 100 (2008), p. 026408.
  • L. Bartosch, M. de Souza, and M. Lang, Scaling theory of the Mott transition and breakdown of the Grüneisen scaling near a finite-temperature critical end point, Phys. Rev. Lett. 104 (2010), p. 24570.
  • M. Zacharias, L. Bartosch, and M. Garst, Mott metal-insulator transition on compressible lattices, Phys. Rev. Lett. 10 (2012), p. 176401.
  • G. Sordi, P. S’emon, K. Haule, and A.-M. S. Tremblay, Strong coupling superconductivity, pseudogap, and Mott transition, Phys. Rev. Lett. 108 (2012), p. 216401.
  • M. Abdel-Jawad, R. Kato, I. Watanabe, N. Tajima, and Y. Ishii, Universality class of the Mott transition, Phys. Rev. Lett. 114 (2015), p. 106401.
  • H. Terletska, J. Vucicević, D. Tanasković, and V. Dobrosavljević, Quantum critical transport near the Mott transition, Phys. Rev. Lett. 107 (2011), p. 026401.
  • J. Vucicević, H. Terletska, D. Tanasković, and V. Dobrosavljević, Finite-temperature crossover and the quantum Widom line near the Mott transition, Phys. Rev. B 88 (2013), p. 075143.
  • J. Müller, Fluctuation spectroscopy: A new approach for studying low-dimensional molecular metals, ChemPhysChem 12 (2011), pp. 1222–1245.
  • B. Raquet, Electronic noise in materials and devices, in Spin Electronics, M. Ziese and M.J. Thornton, eds., Springer, Berlin, 2001, pp. 232–273.
  • Sh. Kogan, Electronic noise and fluctuations in solids, Cambridge University Press, Cambridge, 1996.
  • J. Müller, Y.Q. Li, S. von Moln’ar, Y. Ohno, and H. Ohno, Single-electron switching in AlxGaxAs/GaAs Hall devices, Phys. Rev. B 74 (2006), p. 125310.
  • J. Müller, S. von Moln’ar, Y. Ohno, and H. Ohno, Decomposition of 1/f Noise in AlxGaxAs/GaAs) Hall devices, Phys. Rev. Lett. 96 (2006), p. 186601.
  • J. Müller, J. Brandenburg, and J.A. Schlueter, Magnetic-field induced crossover of superconducting percolation regimes in the layered organic Mott system κ-(BEDT-TTF)2CU[N(CN)2]Cl, Phys. Rev. Lett. 102 (2009), p. 047004.
  • J.H. Scofield, AC method for measuring low-frequency resistance fluctuation spectra, Rev. Sci. Instr. 58 (1987), pp. 985–993.
  • B. Hartmann, D. Zielke, J. Polzin, T. Sasaki, and J. Müller, Critical slowing down of the charge carrier dynamics at the Mott metal-insulator transition, Phys. Rev. Lett. 114 (2015), p. 216403.
  • G. Kotliar, E. Lange, and M.J. Rozenberg, Landau theory of the finite temperature Mott transition, Phys. Rev. Lett. 84 (2000), pp. 5180–5183.
  • M. Imada, Universality classes of metal-insulator transitions in strongly correlated electron systems and mechanism of high-temperature superconductivity, Phys. Rev. B 72 (2005), p. 075113.
  • H. Taniguchi, H. Kawamoto, and K. Kanoda, Superconductor-insulator phase transformation of partially deuterated κ-(BEDT-TTF)2Cu[N(CN)2]Br by control of the cooling rate, Phys. Rev. B 59 (1999), pp. 8424–8427.
  • H. Shinaoka and M. Imada, Soft hubbard gaps in disordered itinerant models with short-range interaction, Phys. Rev. Lett. 102 (2009), p. 016404.
  • H. Shinaoka and M. Imada, Single-particle excitations under coexisting electron correlation and disorder: A numerical study of the Anderson-Hubbard model, J. Phys. Soc. Jpn. 78 (2009), p. 094708.
  • S. Diehl, T. Methfessel, U. Tutsch, J. Müller, M. Lang, M. Huth, M. Jourdan, and H.-J. Elmers, Disorder-induced gap in the normal density of states of the organic superconductor κ-(BEDT-TTF)2Cu[N(CN)2]Br, J. Phys.: Cond. Mat. 27 (2015), p. 265601.
  • V. Dobrosavljević, D. Tanasković, and A.A. Pastor, Glassy behavior of electrons near metal-insulator transitions, Phys. Rev. Lett. 90 (2003), p. 016402.
  • J. Schmalian and P. Wolynes, Stripe glasses: Self-generated randomness in a uniformly frustrated system, Phys. Rev. Lett. 85 (2000), pp. 836–839.
  • S. Bogdanovich and D. Popović, Onset of glassy dynamics in a two-dimensional electron system in silicon, Phys. Rev. Lett. 88 (2002), p. 236401.
  • J. Jaroszyński, D. Popović, and T.M. Klapwijk, Magnetic-field dependence of the anomalous noise behavior in a two-dimensional electron system in silicon, Phys. Rev. Lett. 89 (2002), pp. 276401; ibid. 92 (2004), p. 226403.
  • Sw Kar, A.K. Raychaudhuri, A. Ghosh, H. von Löhneysen, and G. Weiss, Observation of non-Gaussian conductance fluctuations at low temperatures in Si:P(B) at the metal-insulator transition, Phys. Rev. Lett. 91 (2003), p. 216603.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.