800
Views
27
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Berkovich nanoindentation study of monocrystalline tungsten: a crystal plasticity study of surface pile-up deformation

&
Pages 1418-1435 | Received 20 Jul 2016, Accepted 21 Feb 2017, Published online: 06 Mar 2017

References

  • S.R. Kalidindi and S. Pathak, Determination of the effective zero-point and the extraction of spherical nanoindentation stress-strain curves, Acta Mater. 56 (2008), pp. 3523–3532.10.1016/j.actamat.2008.03.036
  • X. Li and B. Bhushan, A review of nanoindentation continuous stiffness measurement technique and its applications, Mater. Charact. 48 (2002), pp. 11–36.10.1016/S1044-5803(02)00192-4
  • Y.J. Park and G.M. Pharr, Nanoindentation with spherical indenters: Finite element studies of deformation in the elastic-plastic transition regime, Thin Solid Films 447–448 (2004), pp. 246–250.10.1016/S0040-6090(03)01102-7
  • R. Saha and W.D. Nix, Effects of the substrate on the determination of thin film mechanical properties by nanoindentation, Acta Mater. 50 (2002), pp. 23–38.10.1016/S1359-6454(01)00328-7
  • H. Bei, Z.P. Lu, and E.P. George, Theoretical strength and the onset of plasticity in bulk metallic glasses investigated by nanoindentation with a spherical indenter, Phys. Rev. Lett. 93 (2004), pp. 125504-1–125504-4.
  • M.A. Lodes, A. Hartmaier, M. Göken, and K. Durst, Influence of dislocation density on the pop-in behavior and indentation size effect in CaF2 single crystals: Experiments and molecular dynamics simulations, Acta Mater. 59 (2011), pp. 4264–4273.10.1016/j.actamat.2011.03.050
  • W.W. Gerberich, D.E. Kramer, N.I. Tymiak, A.A. Volinsky, D.F. Bahr, and M.D. Kriese, Nanoindentation-induced defect–interface interactions: Phenomena, methods and limitations, Acta Mater. 47 (1999), pp. 4115–4123.10.1016/S1359-6454(99)00270-0
  • M. Liu, C. Lu, and A.K. Tieu, Crystal plasticity finite element method modelling of indentation size effect, Int. J. Solids Struct. 54 (2015), pp. 42–49.10.1016/j.ijsolstr.2014.11.008
  • D. Esqué-de los Ojos, J. Očenášek, and J. Alcalá, Sharp indentation crystal plasticity finite element simulations: Assessment of crystallographic anisotropy effects on the mechanical response of thin fcc single crystalline films, Comput. Mater. Sci. 86 (2014), pp. 186–192.10.1016/j.commatsci.2014.01.064
  • M. Mata, O. Casals, and J. Alcalá, The plastic zone size in indentation experiments: The analogy with the expansion of a spherical cavity, Int. J. Solids Struct. 43 (2006), pp. 5994–6013.10.1016/j.ijsolstr.2005.07.002
  • J. Rodríguez and M.A.G. Maneiro, A procedure to prevent pile up effects on the analysis of spherical indentation data in elastic-plastic materials, Mech. Mater. 39 (2007), pp. 987–997.10.1016/j.mechmat.2007.04.003
  • B. Eidel, Crystal plasticity finite-element analysis versus experimental results of pyramidal indentation into (001) fcc single crystal, Acta Mater. 59 (2011), pp. 1761–1771.10.1016/j.actamat.2010.11.042
  • W.Z. Yao, C.E. Krill III, B. Albinski, H.C. Schneider, and J.H. You, Plastic material parameters and plastic anisotropy of tungsten single crystal: A spherical micro-indentation study, J. Mater. Sci. 49 (2014), pp. 3705–3715.10.1007/s10853-014-8080-z
  • Y. Liu, S. Varghese, J. Ma, M. Yoshino, H. Lu, and R. Komanduri, Orientation effects in nanoindentation of single crystal copper, Int. J. Plast 24 (2008), pp. 1990–2015.10.1016/j.ijplas.2008.02.009
  • C. Zambaldi and D. Raabe, Plastic anisotropy of γ-TiAl revealed by axisymmetric indentation, Acta Mater. 58 (2010), pp. 3516–3530.10.1016/j.actamat.2010.02.025
  • N. Zaafarani, D. Raabe, F. Roters, and S. Zaefferer, On the origin of deformation-induced rotation patterns below nanoindents, Acta Mater. 56 (2008), pp. 31–42.10.1016/j.actamat.2007.09.001
  • C.A. Brookes, J.B. O’Neill, and B.A.W. Redfern, Anisotropy in the hardness of single crystals, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 322 (1971), pp. 73–88.10.1098/rspa.1971.0055
  • J. Alcala, O. Casals, and J. Ocenasek, Micromechanics of pyramidal indentation in fcc metals: Single crystal plasticity finite element analysis, J. Mech. Phys. Solids 56 (2008), pp. 3277–3303.10.1016/j.jmps.2008.07.004
  • O. Casals, J. Ocenasek, and J. Alcala, Crystal plasticity finite element simulations of pyramidal indentation in copper single crystals, Acta Mater. 55 (2007), pp. 55–68.10.1016/j.actamat.2006.07.018
  • A. Barnoush, Correlation between dislocation density and nanomechanical response during nanoindentation, Acta Mater. 60 (2012), pp. 1268–1277.10.1016/j.actamat.2011.11.034
  • S. Shim, H. Bei, M.K. Miller, G.M. Pharr, and E.P. George, Effects of focused ion beam milling on the compressive behavior of directionally solidified micropillars and the nanoindentation response of an electropolished surface, Acta Mater. 57 (2009), pp. 503–510.10.1016/j.actamat.2008.09.033
  • W. Wang, C.B. Jiang, and K. Lu, Deformation behavior of Ni3Al single crystals during nanoindentation, Acta Mater. 51 (2003), pp. 6169–6180.10.1016/S1359-6454(03)00436-1
  • W.Z. Yao, P. Wang, A. Manhard, C.E. Krill, and J.H. You, Effect of hydrogen on the slip resistance of tungsten single crystals, Mater. Sci. Eng. A 559 (2013), pp. 467–473.10.1016/j.msea.2012.08.127
  • P. Peralta, R. Ledoux, M. Hakik, R. Dickerson, and P. Dickerson, Characterization of surface deformation around vickers indents in monocrystalline materials, Metall. Mater. Trans. A 35 (2004), pp. 2247–2255.10.1007/s11661-006-0204-x
  • N.A. Stelmashenko and L.M. Brown, Deformation structure of microindentations in W(1 0 0): A transmission electron microscopy study, Philos. Mag. A 74 (1996), pp. 1195–1206.10.1080/01418619608239719
  • W.C. Oliver and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992), pp. 1564–1583.10.1557/JMR.1992.1564
  • H.J. Chang, M. Fivel, and M. Verdier, Indentation crystal plasticity: Experiments and multiscale simulations, Mater. Res. Soc. Symp. Proc. 1224 (2009), 1224-GG02-05.
  • D. Peirce, R.J. Asaro, and A. Needleman, An analysis of nonuniform and localized deformation in ductile single crystals, Acta Metall. 30 (1982), pp. 1087–1119.10.1016/0001-6160(82)90005-0
  • R.J. Asaro and J.R. Rice, Strain localization in ductile single crystals, J. Mech. Phys. Solids 25 (1977), pp. 309–338.10.1016/0022-5096(77)90001-1
  • R.J. Asaro and A. Needleman, Flow localization in strain hardening crystalline solids, Scr. Metall. 18 (1984), pp. 429–435.10.1016/0036-9748(84)90416-2
  • R. Hill, The essential structure of constitutive laws for metal composites and polycrystals, J. Mech. Phys. Solids 15 (1967), pp. 79–95.10.1016/0022-5096(67)90018-X
  • R. Hill, Generalized constitutive relations for incremental deformation of metal crystals by multislip, J. Mech. Phys. Solids 14 (1966), pp. 95–102.10.1016/0022-5096(66)90040-8
  • R. Hill and J.R. Rice, Constitutive analysis of elastic-plastic crystals at arbitrary strain, J. Mech. Phys. Solids 20 (1972), pp. 401–413.10.1016/0022-5096(72)90017-8
  • Y. Huang, A user-material subroutine incorporating single crystal plasticity in the abaqus finite element program, Rep. MECH-178, Division of Applied Sciences, Harvard University, Cambridge, MA, 1991.
  • J. Očenášek, M.R. Ripoll, S.M. Weygand, and H. Riedel, Multi-grain finite element model for studying the wire drawing process, Comput. Mater. Sci. 39 (2007), pp. 23–28.10.1016/j.commatsci.2006.01.024
  • C. Bohnert, N.J. Schmitt, S.M. Weygand, O. Kraft, and R. Schwaiger, Fracture toughness characterization of single-crystalline tungsten using notched micro-cantilever specimens, Int. J. Plast. 81 (2016), pp. 1–17.10.1016/j.ijplas.2016.01.014
  • W.D. Nix, Elastic and plastic properties of thin films on substrates: Nanoindentation techniques, Mater. Sci. Eng. A 234–236 (1997), pp. 37–44.10.1016/S0921-5093(97)00176-7
  • Y.B. Park, D.N. Lee, and G. Gottstein, The evolution of recrystallization textures in body centred cubic metals, Acta Mater. 46 (1998), pp. 3371–3379.10.1016/S1359-6454(98)00052-4
  • Y.-H. Lee and D. Kwon, Measurement of residual-stress effect by nanoindentation on elastically strained (1 0 0) W, Scr. Mater. 49 (2003), pp. 459–465.10.1016/S1359-6462(03)00290-2
  • G. Subhash, Y.J. Lee, and G. Ravichandran, Plastic deformation of CVD textured tungsten–I. Constitutive response, Acta Metall. Mater. 42 (1994), pp. 319–330.10.1016/0956-7151(94)90074-4
  • M. Garfinkle, Room-temperature tensile behavior of <1 0 0> oriented tungsten single crystals with rehenium in ductile solid solution, Fourth Symposium on Refractory Metals, French Lick, IN, 1965.
  • Y.J. Lee, G. Subhash, and G. Ravichandran, Constitutive modeling of textured body-centered-cubic (bcc) polycrystals, Int. J. Plast 15 (1999), pp. 625–645.10.1016/S0749-6419(99)00004-2
  • E. Lassner and W.-D. Schubert, Tungsten: Properties, chemistry, technology of the element, alloys, and chemical compounds, Springer, Berlin, 1999.10.1007/978-1-4615-4907-9
  • W.Z. Yao, Crystal plasticity study of single crystal tungsten by indentation tests, Ph.D. diss., Ulm University, 2012.
  • L. Kaun, A. Luft, J. Richter, and D. Schulze, Slip line pattern and active slip systems of tungsten and molybdenum single crystals weakly deformed in tension at room temperature, Phys. Status Solidi 26 (1968), pp. 485–499.10.1002/(ISSN)1521-3951
  • H.J. Chang, M. Fivel, D. Rodney, and M. Verdier, Multiscale modelling of indentation in FCC metals: From atomic to continuum, C. R. Phys. 11 (2010), pp. 285–292.10.1016/j.crhy.2010.07.007
  • N.A. Stelmashenko, M.G. Walls, L.M. Brown, and Y.V. Milman, Microindentations on W and Mo oriented single crystals: An STM study, Acta Metall. Mater. 41 (1993), pp. 2855–2865.10.1016/0956-7151(93)90100-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.