88
Views
4
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Thermal spike-induced cluster sublimation from carbon nanotubes

&
Pages 1436-1444 | Received 11 Oct 2016, Accepted 23 Feb 2017, Published online: 08 Mar 2017

References

  • J. Lindhard, V. Nielsen, M. Scharff, and P.V. Thomsen, Integral equations governing radiation effects, Mat. Fys. Medd. Dan. Vid. Selsk. 33(10) (1963), pp. 1–42.
  • M.T. Robinson, The energy spectra of atoms slowing down in structureless media, Phil. Mag. 12 (1965), pp. 145–156; Influence of the scattering law on radiation damage displacement cascades, Phil. Mag. (1965), pp. 741–765.10.1080/14786436508224955
  • M.W. Thompson, The energy spectrum of ejected atoms during the high energy sputtering of gold, Phil. Mag. 18 (1968), pp. 377–414.10.1080/14786436808227358
  • P. Sigmund, Theory of sputtering: Sputtering yield of amorphous and polycrystalline targets, Phys. Rev. 184 (1969), pp. 383–416.10.1103/PhysRev.184.383
  • A. von Hippel, Cathode sputtering problems. (III Communication) On the theory of cathode atomization, Ann. Phys. 386 (1926), pp. 1043–1075.10.1002/(ISSN)1521-3889
  • M.W. Thompson and R. Nelson, Evidence for heated spikes in bombarded gold from the energy spectrum of atoms ejected by 43 kev A+ and Xe+ ions, Phil. Mag. 7 (1962), pp. 2015–2026.10.1080/14786436208214470
  • G. Vineyard, Thermal spikes and activated processes, Radiat. Eff. 29 (1976), pp. 245–248.10.1080/00337577608233050
  • R. Kelly, Theory of thermal sputtering, Radiat. Eff. 32 (1977), pp. 91–100.10.1080/00337577708237462
  • P. Sigmund and C. Claussen, Sputtering from elastic-collision spikes in heavy-ion-bombarded metals, J. Appl. Phys. 52 (1981), pp. 990–993.10.1063/1.328790
  • S. Ahmad, B. Farmery, and M.W. Thompson, The effect of ion mass and target temperature on the energy distribution of sputtered atoms, Nucl. Instrum. Methods 170 (1980), pp. 327–330; 10.1016/0029-554X(80)91034-4 Some effects of ion mass on the energy spectrum of sputtered gold atoms, Philos. Mag. A 44 (1981), pp. 1387–1394.
  • H.M. Urbassek and K.T. Waldeer, Spikes in condensed rare gases induced by keV-atom bombardment, Phys. Rev. Lett. 67 (1991), pp. 105–108.10.1103/PhysRevLett.67.105
  • M. Kerford and R.P. Webb, An investigation of the thermal profiles induced by energetic carbon molecules on a graphite surface, Carbon 37 (1999), pp. 859–864.10.1016/S0008-6223(98)00286-3
  • W.O. Hofer, Sputtering by particle bombardment, 3rd ed., chap. 1, R.Behrisch, K.Wittmaack, eds., Springer, Berlin, 2007, pp. 15–90.
  • S. Zeeshan, S. Javeed, and S. Ahmad, Mass spectrometric identification of C60 fragmentation regimes under energetic Cs+ bombardment, Int. J. Mass Spectrom. 311 (2012), pp. 1–6.10.1016/j.ijms.2011.11.006
  • S. Javeed, S. Zeeshan, and S. Ahmad, Dynamics of fragmentation and multiple vacancy generation in irradiated single-walled carbon nanotubes, Nucl. Instrum. Methods Phys. Res. B 295 (2013), pp. 22–29.10.1016/j.nimb.2012.10.012
  • S. Ahmad, S. Javeed, S. Zeeshan, A. Naeem, S. Saadat, M. Yousuf, M. Khaleel, A. Mushtaq, M. Shahnawaz, Cs+ sputtered clusters from multi-walled carbon nanotubes, graphite and the structural transformations, Nucl. Instrum. Meth. Phys. Res B 271 (2012), pp. 55–60.
  • A. Qayyum, M.N. Naeem Akhtar, T. Riffat, and S. Ahmad, Photoemission spectroscopy and velocity analysis of sputtered carbon atoms, ions, and clusters Cm0 ±  (m≤4), Appl. Phys. Lett. 75 (1999), pp. 4100–4102.10.1063/1.125549
  • R. Middleton, A survey of negative ions from a cesium sputter source, Nucl. Instrum. Methods 144 (1977), pp. 373–399.
  • J.F. Ziegler, J.P. Biersack, and U. Littmack, The Stopping and Ranges of Ions in Solids, Vol. 1, (SRIM), Pergamon Press, New York, NY, 1985. Available at www.srim.org.
  • A.V. Krasheninnikov, P.O. Lehtinen, A.S. Foster, R.M. Nieminen, and R.M. Nieminen, Bending the rules: Contrasting vacancy energetics and migration in graphite and carbon nanotubes, Chem. Phys. Lett. 418 (2006), pp. 132–136.10.1016/j.cplett.2005.10.106
  • A.J. Lu and B.C. Pan, Nature of single vacancy in achiral carbon nanotubes, Phys. Rev. Lett. 92 (2004), pp. 105504–105507.10.1103/PhysRevLett.92.105504
  • S. Berber and A. Oshiyama, Atomic and electronic structure of divacancies in carbon nanotubes, Phys. Rev. B 77 (2008), p. 165405.10.1103/PhysRevB.77.165405
  • A.V. Krasheninnikov and K. Nordlund, Ion and electron irradiation-induced effects in nanostructured materials, J. Appl. Phys. 107 (2010), pp. 071301–71370.10.1063/1.3318261
  • A.V. Krasheninnikov and F. Banhart, Engineering of nanostructured carbon materials with electron or ion beams, Nat. Mater. 6 (2007), pp. 723–733.10.1038/nmat1996

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.