147
Views
25
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Donor impurity-related photoionization cross section in GaAs cone-like quantum dots under applied electric field

, , , , , & show all
Pages 1445-1463 | Received 30 Dec 2016, Accepted 28 Feb 2017, Published online: 27 Mar 2017

References

  • F. Capasso, K. Mohammed, and A.Y. Cho, Resonant tunneling through double barriers, perpendicular quantum transport phenomena in superlattices, and their device applications, IEEE J. Quantum Electron QE-22 (1986), pp. 1853–1868.
  • D.A.B. Miller, Quantum well optoelectronics switching devices, Int. J. High Speed Electron 1 (1990), pp. 19–46.
  • R.S. Tucker, P-Ch Ku, and C.J. Chang-Hasnain, Slow-light optical buffers: Capabilities and fundamental limitations, J. Lightwave Technol. 23 (2005), pp. 4046–4065.
  • C.J. Chang-Hasnain, P-Ch Ku, J. Kin, and S.-L. Chuang, Variable optical buffer using slow light in semiconductor nanostructures, Proc. IEEE 91 (2003), pp. 1884–1896.
  • C.J. Chang-Hasnain and S.L. Chuang, Slow and fast light in semiconductor quantum-well and quantum-dot devices, J. Lightwave Technol. 24 (2006), pp. 4642–4654.
  • S. Akgül, M. Şahin, and K. Köksal, A detailed investigation of the electronic properties of a multi-layer spherical quantum dot with a parabolic confinement, J. Lumin. 132 (2012), pp. 1705–1713.
  • E. Sadeghi, M. Moradi, LM, and P. Zamani, Effect of dielectric mismatch on impurity binding energy in double ellipsoidal quantum dots, Physica E 56 (2014), pp. 113–116.
  • Y.C. Cao, Impurities enhance semiconductor nanocrystal performance, Science 332 (2011), pp. 48–49.
  • M. Cristea and E.C. Niculescu, Polarizability of a donor impurity in dielectrically modulated coreshell nano-dots, Phys. Lett. A 377 (2013), pp. 1221–1226.
  • C.M. Duque, M.G. Barseghyan, and C.A. Duque, Donor impurity in vertically-coupled quantum-dots under hydrostatic pressure and applied electric field, Eur. Phys. J. B 73 (2010), pp. 309–319.
  • Z. Zeng, ChS Garoufalis, S. Baskoutas, and A.F. Terzis, Stark effect of donor binding energy in a self-assembled GaAs quantum dot subjected to a tilted electric field, Phys. Lett. A 376 (2012), pp. 2712–2716.
  • M. Cristea, A. Radu, and E.C. Niculescu, Electric field effect on the third-order nonlinear optical susceptibility in inverted coreshell nanodots with dielectric confinement, J. Lumin. 143 (2013), pp. 592–599.
  • I.S. Zharkova, N.E. Markina, A.V. Markin, D.D. Drozd, E.S. Speranskaya, and IYu Goryacheva, Influence of electric field on the properties of the polymer stabilized luminescent quantum dots in aqueous solutions, J. Lumin 176 (2016), pp. 65–70.
  • M. Solaimani, Magnetic field effects on linear optical properties of GaN/AlN multi-wells quantum rings and dots with constant total effective radiuses, Opt. Quant. Electron 48 (2016), pp. 161–172.
  • N. Raigoza, A.L. Morales, and C.A. Duque, Effects of hydrostatic pressure on donor states in symmetrical GaAs-Ga0.7Al0.3As double quantum wells, Physica B 363 (2005), pp. 262–270.
  • Lj. Stevanović, N. Filipović, and V. Pavlović, Optical properties of spherical quantum dot with on-center hydrogen impurity in magnetic field, Opt. Quant. Electron 48 (2016), pp. 231–238.
  • F. Dujardin, A. Oukerroum, E. Feddi, J. Bosch Bailach, J. Martínez-Pastor, and M. Zazi, Effect of a lateral electric field on an off-center single dopant confined in a thin quantum disk, J. Appl. Phys. 111 (2012), pp. 034317–034324.
  • A. Talbi, E. Feddi, A. Zouitine, M. El Haouari, M. Zazoui, A. Oukerroum, F. Dujardin, E. Assaid, and M. Addou, Control of the binding energy by tuning the single dopant position, magnetic field strength and shell thickness in ZnS/CdSe core/shell quantum dot, Physica E 84 (2016), pp. 303–309.
  • M. Yamaguchi, T. Asano, and S. Noda, Photon emission by nanocavity-enhanced quantum anti-Zeno effect in solid-state cavity quantum-electrodynamics, Opt. Express 16 (2008), pp. 18067–18080.
  • A. Huggenberger, C. Schneider, C. Drescher, S. Heckelmann, T. Heindel, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, Site-controlled In(Ga)As/GaAs quantum dots for integration into optically and electrically operated devices, J. Cryst. Growth 323 (2011), pp. 194–197.
  • S. Pickering, A. Kshirsagar, J. Ruzyllo, and J. Xu, Patterned mist deposition of tri-colour CdSe/ZnS quantum dot films toward RGB LED devices, Opto-Electron. Rev. 20 (2012), pp. 148–152.
  • D.B. Hayrapetyan, E.M. Kazaryan, and H.A. Sarkisyan, Magneto-absorption in conical quantum dot ensemble: Possible applications for QD LED, Opt. Commun. 371 (2016), pp. 138–143.
  • V. Lozovski and V. Piatnytsia, The analytical study of electronic and optical properties of pyramid-like and cone-like quantum dots, J. Comput. Theor. Nanosci. 8 (2011), pp. 1–9.
  • R. Khordad and H. Bahramiyan, Study of impurity position effect in pyramid and cone like quantum dots, Eur. Phys. J. Appl. Phys. 67 (2014), pp. 20402–20409.
  • A. Gil-Corrales, A.L. Morales, R.L. Restrepo, M.E. Mora-Ramos, and C.A. Duque, Donor-impurity-related optical response and electron Raman scattering in GaAs cone-like quantum dots, Physica B 507 (2017), pp. 76–83.
  • A. Sali, H. Satori, M. Fliyou, and H. Loumhari, The photoionization cross-section of impurities in quantum dots, Phys. Stat. Sol. B 232 (2002), pp. 209–219.
  • H. Ham and H.N. Spector, Photoionization cross section of hydrogenic impurities in spherical quantum dots, J. Appl. Phys. 93 (2003), pp. 3900–3905.
  • A.L. Morales, A. Montes, S.Y. López, N. Raigoza, and C.A. Duque, Donor-related density of states and polarizability in a GaAs-(Ga, Al)As quantum-well under hydrostatic pressure and applied electric field, Phys. Stat. Sol. (c) (2003), pp. 652–656.
  • J.D. Correa, N. Porras-Montenegro, and C.A. Duque, Donor-related photoionization cross-section of GaAs(Ga, Al)As quantum dots: Hydrostatic pressure effects, Phys. Stat. Sol. B 241 (2004), pp. 2440–2443.
  • J.D. Correa, N. Porras-Montenegro, and C.A. Duque, Binding energy and photoionization cross-section in GaAs quantum well-wires and quantum dots: magnetic field and hydrostatic pressure effects, Braz. J. Phys. 36 (2006), pp. 387–390.
  • E. Kasapoglu, H. Sari, U. Yesilgul, and I. Sökmen, The effect of intense laser field on the photoionization cross-section and binding energy of shallow donor impurities in graded quantum-well wire under an electric field, J. Phys.: Condens. Matter 18 (2006), pp. 6263–6271.
  • M. Şahin, Photoionization cross section and intersublevel transitions in a one- and two-electron spherical quantum dot with a hydrogenic impurity, Phys. Rev. B 77 (2008), pp. 045317–045329.
  • M. Barseghyan, A.A. Kirakosyan, and C.A. Duque, Donor-impurity related binding energy and photoinization cross-section in quantum dots: electric and magnetic fields and hydrostatic pressure effects, Eur. Phys. J. B 72 (2009), pp. 521–529.
  • S. Yilmaz, H. Şafak, R. Şahingoz, and M. Erol, Photoionization cross section and refractive-index change of hydrogenic impurities in a CdS-SiO2 spherical quantum dot, Cent. Eur. J. Phys. 8 (2010), pp. 438–444.
  • N. Porras-Montenegro, N. Raigoza, E. Reyes-Gómez, C.A. Duque, and L.E. Oliveira, Effects of hydrostatic pressure on the conduction-electron g-factor in GaAs-Ga0.71-xAlxAs quantum wells, Phys. Stat Sol. (b) 246 (2009), pp. 648–651.
  • J.C. Martínez-Orozco, M.E. Mora-Ramos, and C.A. Duque, Nonlinear optical rectification and second and third harmonic generation in GaAs δ-FET systems under hydrostatic pressure, J. Lumin. 132 (2012), pp. 449–456.
  • M. Şahin, F. Tek, and A. Erdinç, The photoionization cross section of a hydrogenic impurity in a multilayered spherical quantum dot, J. Appl. Phys. 111 (2012), pp. 084317–084325.
  • L.M. Burileanu, Photoionization cross-section of donor impurity in spherical quantum dots under electric and intense laser fields, J. Lumin. 145 (2014), pp. 684–689.
  • E.C. Niculescu, Impurity-related photoionization cross section in a pyramid-shaped quantum dot: Intense laser field and hydrostatic pressure effects, Physica E 63 (2014), pp. 105–113.
  • S. Liang, W. Xie, X. Li, and H. Shen, Photoionization and binding energy of a donor impurity in a quantum dot under an electric field: Effects of the hydrostatic pressure and temperature, Superlattices Microstruct. 49 (2011), pp. 623–631.
  • U. Yesilgul, Donor impurity-related photoionization cross-section in parabolic quantum wires: Effects of intense laser field and applied electric field, Physica E 74 (2015), pp. 34–38.
  • T. Chen, W. Xie, and S. Liang, Optical and electronic properties of a two-dimensional quantum dot with an impurity, J. Lumin. 139 (2013), pp. 64–68.
  • L.M. Magid, Electromagnetic Felds, Theory and Waves, John Wiley and sons, New York, 1972.
  • V. Lozovski, The effective susceptibility concept in the electrodynamics of nano-systems, J. Comput. Theor. Nanosci. 7 (2010), pp. 2077–2093.
  • O. Keller, Local fields in the electrodynamics of mesoscopic media, Phys. Rep. 268 (1996), p. 85262.
  • O. Keller and T. Garm, Retarded electromagnetic response of a spherical quantum dot: A self-consistent field calculation, Phys. Rev. B 52 (1995), pp. 4670–4673.
  • A.E. DePrince and R.J. Hinde, Accurate computation of electric field enhancement factors for metallic nanoparticles using the discrete dipole approximation, Nanoscale Res. Lett. 5 (2010), pp. 592–596.
  • C.M. Duque, R.L. Restrepo, and C.A. Duque, Tilted electric field effects on the electronic states in a GaAs quantum disk, Superlattices Microstruct. 52 (2012), pp. 1078–1082.
  • B.K. Ridley, Quantum Processes in Semiconductors, Oxford University Press, Oxford, 2013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.