441
Views
4
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Improving magnetocaloric properties of Fe68–xCrxTb5B23Nb4 (x = 0, 2, 4, 6 and 8) metallic glasses having high glass-forming ability with tunable Curie temperature

, &
Pages 1464-1478 | Received 15 Oct 2016, Accepted 01 Mar 2017, Published online: 27 Mar 2017

References

  • E. Warburg, Magnetische Untersuchungen [Magnetic Investigations]. Ann. Phys. 249 (1881), pp. 141–164.10.1002/(ISSN)1521-3889
  • V.K. Pecharsky and K.A. Gschneidner Jr, Giant magnetocaloric effect in Gd5(Si2Ge2), Phys. Rev. Lett. 78 (1997), pp. 4494–4497.10.1103/PhysRevLett.78.4494
  • F.X. Hu, B.G. Shen, J.R. Sun, Z.H. Cheng, G.H. Rao, and X.X. Zhang, Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4 Si1.6, Appl. Phys. Lett. 78 (2001), pp. 3675–3677.10.1063/1.1375836
  • F. Guillou, G. Porcari, H. Yibole, N.V. Dijk, and E.H. Brück, Taming the first-order transition in giant magnetocaloric materials, Adv. Mater. (2014), pp. 2671–2675.10.1002/adma.v26.17
  • P. Yu, N.Z. Zhang, Y.T. Cui, L. Wen, Z.Y. Zeng, and L. Xia, Achieving an enhanced magneto-caloric effect by melt spinning a Gd55Co25Al20 bulk metallic glass into amorphous ribbons, J. Alloys Compd. 655 (2016), pp. 353–356.10.1016/j.jallcom.2015.09.205
  • A. Kitanovski, J. Tušek, U. Tomc, U. Plaznik, M. Ožbolt, and A. Poredoš, Magnetocaloric Energy Conversion from Theory to Applications, Springer International Publishing, Cham, Switzerland, 2015.
  • A. M. Tishin, Method for carrying out a magnetic therapy of malignant neoplasms, WO 2006135270:A1, (2006).
  • A.M. Tishin, E.V. Zatsepina, P.W. Egolf, and D. Vuarnoz, Magnetocaloric effect applied for a cancer tumour defeat: an improved hyperthermia method, Proceedings of third IIF-IIR international conference on magnetic refrigeration at room temperature, Des Moines, IA, 11–15 May 2009.
  • W. Klement, R.H. Willens, and P. Duwez, Non-crystalline Structure in Solidified Gold-Silicon Alloys, Nature 187 (1960), pp. 869–870.10.1038/187869b0
  • Z. Stokłosa, J. Rasek, P. Kwapuliński, G. Badura, G. Haneczok, L. Pająk, J. Lelątko, and A. Kolano-Burian, Magnetic, electrical and plastic properties of Fe76Nb2Si13B9, Fe75Ag1Nb2Si13B9 and Fe75Cu1Nb2Si13B9 amorphous alloys, J. Alloys Compd. 509 (2011), pp. 9050–9054.10.1016/j.jallcom.2011.05.070
  • L.A. Dobrzanski, M. Szindler, A. Drygala, and M.M. Szindler, Silicon solar cells with Al2O3 antireflection coating, Open Phys. 12 (2014), pp. 666–670.
  • A. Smith, C.R.H. Bahl, R. Bjørk, K. Engelbrecht, K.K. Nielsen, and N. Pryds, Materials challenges for high performance magnetocaloric refrigeration devices, Adv. Energy Mater. 2 (2012), pp. 1288–1318.10.1002/aenm.v2.11
  • W.H. Wang, M.X. Pang, D.Q. Zhao, Y. Hu, and H.Y. Bai, Enhancement of the soft magnetic properties of FeCoZrMoWB bulk metallic glass by microalloying, J. Phys.: Condens. Matter 16 (2004), pp. 3719–3723.
  • A. Rahman, Q. Luo, Y. Lu, and J. Shen, Recurring effects of Cu addition on magnetic properties in Fe-based bulk metallic glasses, J. Non-Cryst. Solids 422 (2015), pp. 1–5.
  • L. Dou, H. Liu, L. Hou, L. Xue, W. Yang, Y. Zhao, C. Chang, and B. Shen, Effects of Cu substitution for Fe on the glass-forming ability and soft magnetic properties for Fe-based bulk metallic glasses, J. Magn. Magn. Mater. 358–359 (2014), pp. 23–26.10.1016/j.jmmm.2014.01.014
  • I. Kucuk, K. Sarlar, A. Adam, and E. Civan, Magnetocaloric and magnetoresistance properties in Co-based (Co0.402Fe0.201Ni0.067B0.227Si0.053Nb0.05)100-xCux (x=0-1) glassy ribbons, Philos. Mag. 96 (2016), pp. 3120–3130.10.1080/14786435.2016.1227485
  • Y. Dong, Q. Man, H. Sun, B. Shen, S. Pang, T. Zhang, A. Makino, and A. Inoue, Glass-forming ability and soft magnetic properties of (Co0.6Fe0.3Ni0.1)67B22+xSi6−xNb5 bulk glassy alloys, J. Alloys Compd. 509 (2011), pp. S206–S209.10.1016/j.jallcom.2011.01.045
  • K. Sarlar and I. Kucuk, Glass forming ability and magnetic properties of Co(40.2 x)Fe(20.1+x)Ni6.7B22.7Si5.3Nb5 (x=0-10), J. Magn. Magn. Mater. 374 (2015), pp. 607–610.10.1016/j.jmmm.2014.08.060
  • C.Y. Lin, M.C. Lee, and T.S. Chin, Fe-Y-M-B (M=Nb or Ta) bulk metallic glasses with ultrahigh strength and good soft magnetic properties, J. Phys. D: Appl. Phys. 40 (2007), pp. 310–314.10.1088/0022-3727/40/2/004
  • S. Lee, H. Kato, T. Kubota, K. Yubuta, A. Makino, and A. Inoue, Excelent thermal stability and bulk glass forming ability of Fe-B-Nb-Y soft magnetic metalic glass, Mater. Trans., JIM 49 (2008), pp. 506–512.10.2320/matertrans.MBW200732
  • X.M. Huang, X.D. Wang, Y. He, Q.P. Cao, and J.Z. Jiang, Are there two glass transitions in Fe-M-Y-B (M=Mo, W, Nb) bulk metallic glasses?, Scr. Mater. 60 (2009), pp. 152–155.10.1016/j.scriptamat.2008.09.022
  • J. Li, J. Huo, J. Law, C. Chang, J. Du, Q. Man, X. Wang, and R.W. Li, Magnetocaloric effect in heavy rare-earth elements doped Fe-based bulk metallic glasses with tunable Curie temperature, J. Appl. Phys. 116 (2014), p. 063902.10.1063/1.4892431
  • J. Li, J.Y. Law, J. Huo, A. He, Q. Man, C. Chang, H. Men, J. Wang, X. Wang, and R.W. Li, Magnetocaloric effect of Fe–RE–B–Nb (RE = Tb, Ho or Tm) bulk metallic glasses with high glass-forming ability, J. Alloys Compd. 644 (2015), pp. 346–349.
  • J. Li, J. Yan Law, H. Ma, A. He, Q. Man, H. Men, J. Huo, C. Chang, X. Wang, and R.W. Li, Magnetocaloric effect in Fe–Tm–B–Nb metallic glasses near room temperature, J. Non-Cryst. Solids 425 (2015), pp. 114–117.10.1016/j.jnoncrysol.2015.06.002
  • Y.K. Fang, C.C. Yeh, C.C. Hsieh, C.W. Chang, H.W. Chang, W.C. Chang, X.M. Li, and W. Li, Magnetocaloric effect in Fe-Zr-B-M (M=Mn, Cr and Co) amorphous systems, J. Appl. Phys. 105 (2009), p. 07A910.10.1063/1.3054369
  • J.Y. Law, R.V. Ramanujan, and V. Franco, Tunable Curie temperatures in Gd alloyed Fe-B-Cr magnetocaloric materials, J. Alloys Compd. 508 (2010), pp. 14–19.10.1016/j.jallcom.2010.08.049
  • R. Yapp, B.E. Watts, and F. Leccabue, Characterisation of amorphous Fe-Cr-Si-B alloys, J. Magn. Magn. 215–216 (2000), pp. 300–302.10.1016/S0304-8853(00)00139-6
  • V. Zhukova, M. Ipatov, A. Zhukov, R. Varga, A. Torcunov, J. Gonzalez, and J.M. Blanco, Studies of magnetic properties of thin microwires with low Curie temperature, J. Magn. Magn. 300 (2006), pp. 16–23.10.1016/j.jmmm.2005.10.024
  • P. Alvarez-Alonso, J.D. Santos, J. Maria Perez, C.F. Sanchez-Valdes, J.L. Sanchez Llamazares, P. Gorria, The substitution effect of chromium on the magnetic properties of (Fe1-xCrx)80Si6B14 metallic glases (0.02 ≤ x ≤ 0.14), J. Magn. Magn.. 347 (2013), pp. 75–78.10.1016/j.jmmm.2013.07.048
  • H.C. Tian, X.C. Zhong, Z.W. Liu, Z.G. Zheng, and J.X. Min, Achieving table-like magnetocaloric effect and large refrigerant capacity around room temperature in Fe78-xCexSi4Nb5B12Cu1 (x=0–10) composite materials, Mater. Lett. 138 (2015), pp. 64–66.10.1016/j.matlet.2014.09.127
  • M. Zhang, J. Li, F. Kong, and J. Liu, Magnetic properties and magnetocaloric effect of FeCrNbYB metallic glasses with high glass-forming ability, Intermetallics 59 (2015), pp. 18–22.10.1016/j.intermet.2014.12.005
  • H. Zhang, R. Li, T. Xu, F. Liu, and T. Zhang, Near room-temperature magnetocaloric effect in FeMnPBC metallic glasses with tunable Curie temperature, J. Magn. Magn. 347 (2013), pp. 131–135.10.1016/j.jmmm.2013.07.020
  • T. Bitoh, A. Makino, A. Inoue, Origin of Low Coercivity of Fe-(Al, Ga)-(P, C, B, Si, Ge) Bulk Glassy Alloys, Mater. Trans., JIM, 44 (2003), pp. 2020–2024.10.2320/matertrans.44.2020
  • T. Hashimoto, T. Numasawa, M. Shino, and T. Okada, Magnetic refrigeration in the temperature range from 10 K to room temperature: the ferromagnetic refrigerants, Cryogenics 21 (1981), pp. 647–653.10.1016/0011-2275(81)90254-X
  • A. Takeuchi and A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of consituent elements and its application to characterization of the main alloying element, Trans. Mater. 46 (2005), pp. 2817–2829.10.2320/matertrans.46.2817
  • J.E. Gao, H.X. Li, Z.B. Jiao, Y. Wu, Y.H. Chen, T. Yu, and Z.P. Lu, Effects of nanocrystal formation on the soft magnetic properties of Fe-based bulk metallic glasses, Appl. Phys. Lett. 99 (2011), p. 052504.10.1063/1.3621832
  • Z.B. Jiao, H.X. Li, J.E. Gao, Y. Wu, and Z.P. Lu, Effects of alloying elements on glass formation, mechanical and soft-magnetic properties of Fe-based metallic glasses, Intermetallics 19 (2011), pp. 1502–1508.10.1016/j.intermet.2011.05.020
  • W. Heisenberg, Zur Theorie des Ferromagnetismus [On the theory of ferromagnetism]. Z. Phys. 49 (1928), pp. 619–636.10.1007/BF01328601
  • K.A. Gschneidner Jr and V.K. Pecharsky, Magnetocaloric materials, Annu. Rev. Mater. Sci. 30 (2000), pp. 387–429.10.1146/annurev.matsci.30.1.387
  • V. Franco and A. Conde, Scaling laws for the magnetocaloric effect in second order phase transitions: From physics to applications for the characterization of materials, Int. J. Refrigeration 33 (2010), pp. 465–473.10.1016/j.ijrefrig.2009.12.019

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.