374
Views
28
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Temperature and frequency dependence of AC electrical properties of Zn and Ni doped CoFe2O4 nanocrystals

, , , , &
Pages 1628-1645 | Received 19 Jan 2016, Accepted 20 Mar 2017, Published online: 03 Apr 2017

References

  • I.H. Gul, and A. Maqsood, Structural, magnetic and electrical properties of cobalt ferrites prepared by the sol–gel route, J. Alloys Compd. 465 (2008), pp. 227–231.10.1016/j.jallcom.2007.11.006
  • A. Virden, S. Wells, and K. O’Grady, Physical and magnetic properties of highly anisotropic cobalt ferrite particles, J. Magn. Magn. Mater. 316 (2007), pp. e768–e771.10.1016/j.jmmm.2007.03.100
  • P.L. Andrade, V.A.J. Silva, J.C. Maciel, M.M. Santillan, N.O. Moreno, L.D.L.S. Valladares, A. Bustamante, S.M.B. Pereira, M.P.C. Silva, and J.A. Aguiar, Preparation and characterization of cobalt ferrite nanoparticles coated with fucan and oleic acid, Hyperfine Interact. 224 (2014), pp. 217–225.10.1007/s10751-013-0835-4
  • M. Mozaffari, J. Amighian, and E. Darsheshdar, Magnetic and structural studies of nickel-substituted cobalt ferrite nanoparticles, synthesized by the sol–gel method, J. Magn. Magn. Mater. 350 (2014), pp. 19–22.10.1016/j.jmmm.2013.08.008
  • E. Girgis, M.M.S. Wahsh, A.G.M. Othman, L. Bandhu, and K.V. Rao, Synthesis, magnetic and optical properties of core/shell Co1-xZnxFe2O4/SiO2 nanoparticles, Nanoscale Res. Lett. 6 (2011), pp. 1–8.
  • N. Sanpo, C.C. Berndt, C. Wen, and J. Wang, Transition metal-substituted cobalt ferrite nanoparticles for biomedical applications, Acta Biomater. 9 (2013), pp. 5830–5837.10.1016/j.actbio.2012.10.037
  • M. Sugimoto, The past, present, and future of ferrites, J. Am. Ceram. Soc. 82 (1999), pp. 269–280.
  • K. Maaz, A. Mumtaz, S.K. Hasanain, and A. Ceylan, Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route, J. Magn. Magn. Mater. 308 (2007), pp. 289–295.
  • I.H. Gul, A. Maqsood, M. Naeem, and M.N. Ashiq, Optical, magnetic and electrical investigation of cobalt ferrite nanoparticles synthesized by co-precipitation route, J. Alloys Compd. 507 (2010), pp. 201–206.10.1016/j.jallcom.2010.07.155
  • D.H. Kim, D.E. Nikles, D.T. Johnson, and C.S. Brazel, Heat generation of aqueously dispersed CoFe2O4 nanoparticles as heating agents for magnetically activated drug delivery and hyperthermia, J. Magn. Magn. Mater. 320 (2008), pp. 2390–2396.10.1016/j.jmmm.2008.05.023
  • M. Raghasudha, D. Ravinder, and P. Veerasomaiah, Magnetic properties of Cr-substituted Co-ferrite nanoparticles synthesized by citrate-gel autocombustion method, J. Nanostructure Chem. 3 (2013), pp. 1–6.
  • G. Aravind, A. Gaffoor, D. Ravinder, and V. Nathanial, Impact of transition metal ion doping on electrical properties of lithium ferrite nanomaterials prepared by auto combustion method, Adv. Mater. Lett. 6 (2015), pp. 179–185.10.5185/amlett
  • G. Dascalu, G. Pompilian, B. Chazallon, V. Nica, O.F. Caltun, S. Gurlui, and C. Focsa, Rare earth doped cobalt ferrite thin films deposited by PLD, Appl. Phys. A 110 (2013), pp. 915–922.10.1007/s00339-012-7196-8
  • P. Kumar, J. Chand, S. Verma, and M. Singh, Micro-structural studies of gadolinium doped cobalt ferrites, Int. J. Theor. Appl. Sci. 3 (2011), pp. 10–12.
  • N. Sivakumar, A. Narayanasamy, K. Shinoda, C.N. Chinnasamy, B. Jeyadevan, and J.M. Greneche, Electrical and magnetic properties of chemically derived nanocrystalline cobalt ferrite, J. Appl. Phys. 102 (2007), pp. 013916-1–013916-8.
  • B. Ünal and A. Baykal, Effect of Zn substitution on electrical properties of nanocrystalline cobalt ferrite, J. Supercond. Nov. Magn. 27 (2014), pp. 469–479.
  • C. Behera, P.R. Das, and R.N.P. Choudhary, Structural and electrical properties of mechanothermally synthesized NiFe2O4 nanoceramics, J. Electron. Mater. 43 (2014), pp. 3539–3549.10.1007/s11664-014-3216-0
  • G. Sathishkumar, C. Venkataraju, and K. Sivakumar, Synthesis, structural and dielectric studies of nickel substituted cobalt-zinc ferrite, Mater. Sci. Appl. 1 (2010), pp. 19–24.
  • K. Verma, A. Kumar, and D. Varshney, Dielectric relaxation behavior of AxCo1−xFe2O4 (A = Zn, Mg) mixed ferrites, J. Alloys Compd. 526 (2012), pp. 91–97.
  • P. Kumar, S.K. Sharma, M. Knobel, and M. Singh, Effect of La3+ doping on the electric, dielectric and magnetic properties of cobalt ferrite processed by co-precipitation technique, J. Alloys Compd. 508 (2010), pp. 115–118.10.1016/j.jallcom.2010.08.007
  • S.K. Mandal, S. Singh, P. Dey, J.N. Roy, P.R. Mandal, and T.K. Nath, Frequency and temperature dependence of dielectric and electrical properties of TFe2O4 (T = Ni, Zn, Zn0.5Ni0.5) ferrite nanocrystals, J. Alloys Compd. 656 (2016), pp. 887–896.10.1016/j.jallcom.2015.10.045
  • R. Nongjai, S. Khan, K. Asokan, H. Ahmed, and I. Khan, Magnetic and electrical properties of In doped cobalt ferrite nanoparticles, J. Appl. Phys. 112 (2012), pp. 084321-1–084321-8.
  • S. Dussan, A. Kumar, J.F. Scott, and R.S. Katiyar, Effect of electrode resistance on dielectric and transport properties of multiferroic superlattice: A impedance spectroscopy study, AIP Adv. 2 (2012), pp. 032136-1–032136-11.
  • S.K. Mandal, A.K. Das, T.K. Nath, D. Karmakar, and B. Satpati, Microstructural and magnetic properties of ZnO:TM(TM=Co, Mn) diluted magnetic semiconducting nanoparticles, J. Appl. Phys. 100 (2006), pp. 104315-1–104315-7.
  • D. Karmakar, S.K. Mandal, R.M. Kadam, P.L. Paulose, A.K. Rajarajan, T.K. Nath, A.K. Das, I. Dasgupta, and G.P. Das, Ferromagnetism in Fe-doped ZnO nanocrystals: Experiment and theory, Phys. Rev. B 75 (2007), pp. 144404-1–144404-14.
  • S. Singh, P. Dey, J.N. Roy, and S.K. Mandal, Enhancement of dielectric constant in transition metal doped ZnO nanocrystals, Appl. Phys. Lett. 105 (2014), pp. 092903-1–092903-4.
  • S.K. Mandal, T.K. Nath, A.K. Das, and D. Karmakar, Microstructural, magnetic, and optical properties of Zn1-x(Mnx/2Cox/2)O (x=0.1 and 0.2) semiconducting nanoparticles, J. Appl. Phys 101 (2007), pp. 063913-1–063913-6.
  • S.K. Mandal, T.K. Nath, and A. Das, Reduction of magnetization in Zn0.9Fe0.1O diluted magnetic semiconducting nanoparticles by doping of Co or Mn ions, J. Appl. Phys. 101 (2007), pp. 123920-1–123920-7.
  • A.L. Patterson, The Scherrer formula for X-ray particle size determination, Phys. Rev. 56 (1939), pp. 978–982.10.1103/PhysRev.56.978
  • N. Sivakumar, A. Narayanasamy, C.N. Chinnasamy, and B. Jeyadevan, Influence of thermal annealing on the dielectric properties and electrical relaxation behaviour innanostructured CoFe2O4 ferrite, J. Phys.: Condens. Matter 19 (2007), pp. 386201–386211.
  • A.K. Nikumbh, R.A. Pawar, D.V. Nighot, G.S. Gugale, M.D. Sangale, M.B. Khanvilkar, and A.V. Nagawade, Structural, electrical, magnetic and dielectric properties of rare-earth substituted cobalt ferrites nanoparticles synthesized by the co-precipitation method, J. Magn. Magn. Mater. 355 (2014), pp. 201–209.10.1016/j.jmmm.2013.11.052
  • S. Singh, P. Dey, J.N. Roy, and S.K. Mandal, Tunable dielectric constant with transition metals doping in Zn1-x(MnTM)xO (TM = Co, Fe) nanocrystals, J. Alloys Compd. 642 (2015), pp. 15–21.10.1016/j.jallcom.2015.04.092
  • J.R. Macdonald, Impedance spectroscopy, Ann. Biomed. Eng. 20 (1992), pp. 289–305.10.1007/BF02368532
  • H.T. Langhammer, Grain boundary reoxidation of donor-doped barium titanate ceramics, J. Eur. Ceram. Soc. 26 (2006), pp. 2899–2907.10.1016/j.jeurceramsoc.2006.02.006
  • S.K. Mandal, T.K. Nath, and I. Manna, Complex impedance spectroscopy of ZnO and Zn0.9TM0.1O (TM = Co, Mn and Fe) semiconducting nanoparticles, Nanosci. Nanotechnol. Lett. 1 (2009), pp. 99–106.10.1166/nnl.2009.1021
  • P.R. Das, S. Behera, R. Padhee, P. Nayak, and R.N.P. Choudhary, Dielectric and electrical properties of Na2Pb2La2W2Ti4Ta4O30 electroceramics, J. Adv. Ceram. 1 (2012), pp. 232–240.10.1007/s40145-012-0024-y
  • C.K. Suman, K. Prasad, and R.N.P. Choudhary, Impedance analysis of Pb2Sb3LaTi5O18 ceramic, Mater. Chem. Phys. 97 (2006), pp. 425–430.10.1016/j.matchemphys.2005.08.038
  • S. Saha and T.P. Sinha, Low-temperature scaling behavior of BaFe0.5Nb0.5O3, Phys. Rev. B 65 (2002), pp. 134103–134106.10.1103/PhysRevB.65.134103
  • J. Garćıa and G. Subías, The Verwey transition – a new perspective, J. Phys.: Condens. Matter 16 (2004), pp. R145–R178.
  • J.R. Macdonald and W.B. Johnson, Fundamentals of Impedance Spectroscopy, in Impedance Spectroscopy: Theory, Experiment, and Applications, John Wiley & Sons Inc, Hoboken, 2005.
  • A. Lakshman, P.S.V.S. Rao, B.P. Rao, and K.H. Rao, Electrical properties of In3+ and Cr3+ substituted magnesium–manganese ferrites, J. Phys. D: Appl. Phys. 38 (2005), pp. 673–678.10.1088/0022-3727/38/5/002
  • Z.Ž. Lazarević, Č. Jovalekić, A. Milutinović, D. Sekulić, V.N. Ivanovski, A. Rečnik, B. Cekić, and N.Ž. Romčević, Nanodimensional spinel NiFe2O4 and ZnFe2O4 ferrites prepared by soft mechanochemical synthesis, J. Appl. Phys. 113 (2013), pp. 18722-1–18722-11.10.1063/1.4801962
  • M. Pollak, Some aspects of non-steady state conduction in bands and hopping processes, Proceedings of the International Conference on Physics of Semiconductors, Exeter, 2005, p. 86.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.