522
Views
14
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Densification mechanisms during reactive spark plasma sintering of Titanium diboride and Zirconium diboride

, , , &
Pages 1588-1609 | Received 17 Oct 2016, Accepted 05 Mar 2017, Published online: 09 Apr 2017

References

  • S. Guo, Densification of ZrB2-based composites and their mechanical and physical properties: A review, J. Eur. Ceram. Soc. 29 (2009), pp. 995–1011.10.1016/j.jeurceramsoc.2008.11.008
  • W.G. Fahrenholtz, G.E. Hilmas, I.G. Talmy, and J.A. Zaykoski, Refractory diborides of zirconium and hafnium, J. Am. Ceram. Soc. 90 (2007), pp. 1347–1364.10.1111/jace.2007.90.issue-5
  • B. Basu, G.B. Raju, and A.K. Suri, Processing and properties of monolithic TiB2 based materials, Int. Mater. Rev. 51 (2006), pp. 352–374.10.1179/174328006X102529
  • R. Licheri, C. Musa, R. Orrù, and G. Cao, Influence of the heating rate on the in situ synthesis and consolidation of ZrB2 by reactive Spark Plasma Sintering, J. Eur. Ceram. Soc. 35 (2015), pp. 1129–1137.10.1016/j.jeurceramsoc.2014.10.039
  • R. Stadelmann, M. Lugovy, N. Orlovskaya, P. Mchaffey, M. Radovic, V.M. Sglavo, S. Grasso, and M.J.Reece, Mechanical properties and residual stresses in ZrB2–SiC spark plasma sintered ceramic composites, J. Eur. Ceram. Soc. 36 (2016), pp. 1527–1537.10.1016/j.jeurceramsoc.2016.01.009
  • M.W. Bird, T. Rampton, D. Fullwood, P.F. Becher, and K.W. White, Local dislocation creep accommodation of a zirconium diboride silicon carbide composite, Acta Mater. 84 (2015), pp. 359–367.10.1016/j.actamat.2014.10.037
  • M.W. Bird, P.F. Becher, and K.W. White, Grain rotation and translation contribute substantially to creep of a zirconium diboride silicon carbide composite, Acta Mater. 89 (2015), pp. 73–87.10.1016/j.actamat.2015.01.008
  • A. Mukhopadhyay and B. Basu, Consolidation–microstructure–property relationships in bulk nanoceramics and ceramic nanocomposites: A review, Int. Mater. Rev. 52 (2007), pp. 257–288.10.1179/174328007X160281
  • W.G. Fahrenholtz, E.J. Wuchina, W.E. Lee, Y. Zhou, Ultra-high Temperature Ceramics: Materials for Extreme Environment Applications, John Wiley & Sons, Inc., Hoboken, NJ, 2014.10.1002/9781118700853
  • T.N. Oder, P. Martin, J.Y. Lin, H.X. Jiang, J.R. Williams, and T. Isaacs-Smith, Thermally stable Schottky contacts on n-type GaN using ZrB2, Appl. Phys. Lett. 88 (2006), p. 183505.10.1063/1.2199611
  • E. Sani, L. Mercatelli, F. Francini, J.L. Sans, and D. Sciti, Ultra-refractory ceramics for high-temperature solar absorbers, Scr. Mater. 65 (2011), pp. 775–778.10.1016/j.scriptamat.2011.07.033
  • G.D. Sim, Y.S. Choi, D. Lee, K.H. Oh, and J.J. Vlassak, High tensile strength of sputter-deposited ZrB2 ceramic thin films measured up to 1016 K, Acta Mater. 113 (2016), pp. 32–40.10.1016/j.actamat.2016.04.047
  • N.S. Karthiselva, B.S. Murty, and S.R. Bakshi, Low temperature synthesis of dense TiB2 compacts by reaction spark plasma sintering, Int. J. Refract. Met. Hard Mater. 48 (2015), pp. 201–210.10.1016/j.ijrmhm.2014.09.015
  • N.S. Karthiselva, B.S. Murty, and S.R. Bakshi, Low temperature synthesis of dense and ultrafine grained zirconium diboride compacts by reactive spark plasma sintering, Scr. Mater. 110 (2016), pp. 78–81.10.1016/j.scriptamat.2015.08.005
  • A.L. Chamberlain, W.G. Fahrenholtz, and G.E. Hilmas, Reactive hot pressing of zirconium diboride, J. Eur. Ceram. Soc. 29 (2009), pp. 3401–3408.10.1016/j.jeurceramsoc.2009.07.006
  • G. Zhao, C. Huang, H. Liu, B. Zou, H. Zhu, and J. Wang, A study on in-situ synthesis of TiB2–SiC ceramic composites by reactive hot pressing, Ceram. Int. 40 (2014), pp. 2305–2313.10.1016/j.ceramint.2013.07.152
  • W.-W. Wu, M. Estili, T. Nishimura, G.-J. Zhang, Y. Sakka, Machinable ZrB2–SiC–BN composites fabricated by reactive spark plasma sintering, Mater. Sci. Eng.: A. 582 (2013), pp. 41–46.
  • J. Zou, G.-J. Zhang, Z.-J. Shen, and J. Binner, Ultra-low temperature reactive spark plasma sintering of ZrB2-hBN ceramics, J. Eur. Ceram. Soc, 15 (2016), pp. 3637–3645.
  • C.F. Hu, Y. Sakka, T. Uchikoshi, T.S. Suzuki, B.K. Jang, S. Grasso, and G. Suarez, Synthesis, microstructure and mechanical properties of ZrB2 ceramic prepared by mechanical alloying and spark plasma sintering, Key Eng Mater. 434–435 (2010), pp. 165–168.10.4028/www.scientific.net/KEM.434-435
  • N.S. Karthiselva and S.R. Bakshi, Reactive spark plasma sintering and mechanical properties of zirconium diboride-titanium diboride Ultrahigh Temperature Ceramic Solid Solutions, Technologies 4 (2016), p. 30. doi:10.3390/technologies4030030.
  • W.C. Oliver and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992), pp. 1564–1583.10.1557/JMR.1992.1564
  • H.-R. Wenk, I. Lonardelli, and D. Williams, Texture changes in the hcp → bcc → hcp transformation of zirconium studied in situ by neutron diffraction, Acta Mater. 52 (2004), pp. 1899–1907.10.1016/j.actamat.2003.12.029
  • HSC Chemistry, Software Program, Outotec, Finland
  • X. Su, F. Fu, Y. Yan, G. Zheng, T. Liang, Q. Zhang, X. Cheng, D. Yang, H. Chi, X. Tang, Q. Zhang, and C. Uher, Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing, Nat. Commun. 5 (2014), p. 4908.10.1038/ncomms5908
  • Z.A. Munir, The effect of external electric fields on the nature and properties of materials synthesized by self-propagating combustion, Mater. Sci. Eng. A 287 (2000), pp. 125–137.10.1016/S0921-5093(00)00765-6
  • Z.A. Munir, D.V. Quach, and M. Ohyanagi, Electric current activation of sintering: A review of the pulsed electric current sintering process, J. Am. Ceram. Soc. 94 (2011), pp. 1–19.10.1111/j.1551-2916.2010.04210.x
  • W.M. Guo and G.-J. Zhang, New borothermal reduction route to synthesize submicrometric ZrB2 powders with low oxygen content, J. Am. Ceram. Soc. 94 (2011), pp. 3702–3705.10.1111/jace.2011.94.issue-11
  • P. Li, Y. Wu, and X. Liu, Controlled synthesis of different morphologies of TiB2 microcrystals by aluminum melt reaction method, Mater. Res. Bull. 48 (2013), pp. 2044–2048.10.1016/j.materresbull.2013.02.026
  • D. Ghosh, G. Subhash, and N. Orlovskaya, Slip-line spacing in ZrB2-based ultrahigh-temperature ceramics, Scr. Mater. 62 (2010), pp. 839–842.10.1016/j.scriptamat.2010.02.015
  • D. Ghosh, G. Subhash, R. Radhakrishnan, Scratch-induced microplasticity and microcracking in zirconium diboride – silicon carbide composite, 56 (2008), pp. 3011–3022.
  • G. Antou, M.D. Ohin, R. Lucas, G. Trolliard, W.J. Clegg, S. Foucaud, and A. Maître, Thermomechanical properties of a spark plasma sintered ZrC–SiC composite obtained by a precursor derived ceramic route, Mater. Sci. Eng.: A. 643 (2015), pp. 1–11.
  • H. Ding, X. Fan, K. Chu, X. Zhang, and X. Liu, The influence of carbon vacancies on the stacking fault energy of TiC, J. Eur. Ceram. Soc. 34 (2014), pp. 1893–1897.10.1016/j.jeurceramsoc.2014.01.013
  • D. Yadav and R. Bauri, Effect of friction stir processing on microstructure and mechanical properties of aluminium, Mater. Sci. Eng. A 539 (2012), pp. 85–92.10.1016/j.msea.2012.01.055
  • H. Sheng, Z. Sun, I. Uytdenhouwen, G. Van Oost, and J. Vleugels, Temperature and deformation effect on the low and high angle grain boundary structure of a double forged pure tungsten, Int. J. Refract. Met. Hard Mater. 50 (2015), pp. 184–190.10.1016/j.ijrmhm.2015.01.008
  • J.S. Haggerty and D.W. Lee, Plastic deformation of ZrB2 single crystals, J. Am. Ceram. Soc. 54 (1971), pp. 572–576.10.1111/jace.1971.54.issue-11
  • D. Ghosh, G. Subhash, and G.R. Bourne, Room-temperature dislocation activity during mechanical deformation of polycrystalline ultra-high-temperature ceramics, Scr. Mater. 61 (2009), pp. 1075–1078.10.1016/j.scriptamat.2009.08.038
  • S. Guicciardi, C. Melandri, and F.T. Monteverde, Characterization of pop-in phenomena and indentation modulus in a polycrystalline ZrB2 ceramic, J. Eur. Ceram. Soc. 30 (2010), pp. 1027–1034.10.1016/j.jeurceramsoc.2009.10.014
  • T. Csanádi, S. Grasso, A. Kovalčíková, J. Dusza, and M. Reece, Nanohardness and elastic anisotropy of ZrB2 crystals, J. Eur. Ceram. Soc. 36 (2016), pp. 239–242.10.1016/j.jeurceramsoc.2015.09.012
  • B. Kim, T.S. Suzuki, K. Morita, H. Yoshida, Y. Sakka, and H. Matsubara, Densification kinetics during isothermal sintering of 8YSZ, J. Eur. Ceram. Soc. 36 (2016), pp. 1269–1275.10.1016/j.jeurceramsoc.2015.11.041
  • L. Takacs, Ball milling-induced combustion in powder mixtures containing titanium, zirconium, or hafnium, J. Solid State Chem. 125 (1996), pp. 75–84.
  • W. Chen, U. Anselmi-Tamburini, J.E. Garay, J.R. Groza, and Z.A. Munir, Fundamental investigations on the spark plasma sintering/synthesis process, Mater. Sci. Eng. A 394 (2005), pp. 132–138.10.1016/j.msea.2004.11.020
  • S.K. Mishra, S. Das, and L.C. Pathak, Defect structures in zirconium diboride powder prepared by self-propagating high-temperature synthesis, Mater. Sci. Eng. A 364 (2004), pp. 249–255.10.1016/j.msea.2003.08.021
  • Z.A. Munir, U. Anselmi-Tamburini, and M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method, J. Mater. Sci. 41 (2006), pp. 763–777.10.1007/s10853-006-6555-2
  • I.G. Talmy, J.A. Zaykoski, and C.A. Martin, Flexural creep deformation of ZrB2/SiC ceramics in oxidizing atmosphere, J. Am. Ceram. Soc. 91 (2008), pp. 1441–1447.10.1111/j.1551-2916.2008.02370.x
  • M. Mallik, K.K. Ray, and R. Mitra, Effect of Si3N4 addition on compressive creep behavior of hot-pressed ZrB2-SiC composites, J. Am. Ceram. Soc. 97 (2014), pp. 2957–2964.10.1111/jace.2014.97.issue-9
  • V. Bhakhri, J. Wang, N. Ur-rehman, C. Ciurea, F. Giuliani, and L.J. Vandeperre, Instrumented nanoindentation investigation into the mechanical behavior of ceramics at moderately elevated temperatures, J. Mater. Res. 27 (2012), pp. 65–75.10.1557/jmr.2011.246
  • M. Patel, V. Singh, J.J. Reddy, V.V. Bhanu Prasad, and V. Jayaram, Densification mechanisms during hot pressing of ZrB2–20vol.% SiC composite, Scr. Mater. 69 (2013), pp. 370–373.
  • C. Hu, Y. Sakka, J. Gao, H. Tanaka, and S. Grasso, Microstructure characterization of ZrB2–SiC composite fabricated by spark plasma sintering with TaSi2 additive, J. Eur. Ceram. Soc. 32 (2012), pp. 1441–1446.10.1016/j.jeurceramsoc.2011.08.024
  • N.L. Okamoto, M. Kusakari, K. Tanaka, H. Inui, and S. Otani, Anisotropic elastic constants and thermal expansivities in monocrystal CrB2, TiB2, and ZrB2, Acta Mater. 58 (2010), pp. 76–84.10.1016/j.actamat.2009.08.058
  • F. Goutier, G. Trolliard, S. Valette, A. Maître, and C. Estournes, Role of impurities on the spark plasma sintering of ZrCx–ZrB2 composites, J. Eur. Ceram. Soc. 28 (2008), pp. 671–678.10.1016/j.jeurceramsoc.2007.07.013
  • K.H. Kim and K.B. Shim, The effect of lanthanum on the fabrication of ZrB2–ZrC composites by spark plasma sintering, Mater. Charact. 50 (2003), pp. 31–37.10.1016/S1044-5803(03)00055-X

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.