186
Views
7
CrossRef citations to date
0
Altmetric
Part A: Materials Science

The atomic scale structure of saccharose-based carbons

, , , , , , & show all
Pages 1675-1697 | Received 23 May 2016, Accepted 20 Mar 2017, Published online: 18 Apr 2017

References

  • R.E. Franklin, Crystallite growth in graphitizing and non-graphitizing carbons, Proc. Roy. Soc. Lond. A: Math. Phys. Eng. Sci. 209 (1951), pp. 196–218.
  • P. Harris, Structure of non-graphitising carbons, Int. Mater. Rev. 42 (1997), pp. 206–218.
  • P. Harris, A. Burian, and S. Duber, High-resolution electron microscopy of a microporous carbon, Phil. Mag. Lett. 80 (2000), pp. 381–386.
  • P. Harris, Fullerene-related structure of commercial glassy carbons, Phil. Mag. 84 (2004), pp. 3159–3167.
  • P. Harris, New perspectives on the structure of graphitic carbons, Cr. Rev. Sol. State Mater. Sci. 30 (2005), pp. 235–253.
  • P. Harris, Z. Liu, and K. Suenaga, Imaging the atomic structure of activated carbon, J. Phys. Condens. Mat. 20 (2008), p. 362201.
  • Y. Chen, Y. Zhu, Z. Wang, Y. Li, L. Wang, L. Ding, X. Gao, Y. Ma, and Y. Guo, Application studies of activated carbon derived from rice husks produced by chemical-thermal process a review, Adv. Colloid Interfac. Sci. 163 (2011), pp. 39–52.
  • S. Duber, J.N. Rouzaud, C. Clinard, and S. Pusz, Microporosity and optical properties of some activated chars, Fuel Process. Tech. 77 (2002), pp. 221–227.
  • M. Gardner, J.C. Dore, A. North, D. Cazorla-Amoros, C.S.M. de Lecea, and M.C. Bellissent-Funel, Structural studies of microporous carbons by neutron diffraction, Carbon 34 (1996), pp. 857–860.
  • A.C. Forse, C. Merlet, P.K. Allan, E.K. Humphreys, J.M. Griffin, M. Aslan, M. Zeiger, V. Presser, Y. Gogotsi, and C.P. Grey, New insights into the structure of nanoporous carbons from nmr, raman, and pair distribution function analysis, Chem. Mater. 27 (2015), pp. 6848–6857.
  • H. Fischer, G. Cuello, P. Palleau, D. Feltin, A. Barnes, Y. Badyal, and J. Simonson, D4c: a very high precision diffractometer for disordered materials, Appl. Phys. A 74 (2002), pp. s160–s162.
  • M. Howe, R. McGreevy, and P. Zetterström, Correct: a correction program for neutron diffraction data, NFL Studsvik Internal Report, 1996.
  • T. Egami and S.J.L. Billinge, Underneath the Bragg Peaks: Structural Analysis of Complex Materials, W. H. Freeman and Company, Oxford, 2003.
  • A. Guinier, X-Ray Diffraction In Crystals, Imperfect Crystals and Amorphus Bodies, Elsevier, San Francisco, CA, 1963.
  • R. Guinebretire, X-ray Diffraction by Polycrystalline Materials, ISTE, London, 2007.
  • F. Tuinstra and J.L. Koenig, Raman spectrum of graphite, J. Chem. Phys. 53 (1970), pp. 1126–1130.
  • A.C. Ferrari and J. Robertson, Interpretation of raman spectra of disordered and amorphous carbon, Phys. Rev. B 61 (2000), pp. 14095–14107.
  • A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, and U. Pöschl, Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information, Carbon 43 (2005), pp. 1731–1742.
  • M. Pawlyta, J.N. Rouzaud, and S. Duber, Raman microspectroscopy characterization of carbon blacks: spectral analysis and structural information, Carbon 84 (2015), pp. 479–490.
  • M. Dresselhaus, A. Jorio, and A. Souza, Filho, and R. Saito, Defect characterization in graphene and carbon nanotubes using raman spectroscopy, Philos. Trans. R. Soc. London A: Math. Phys, Eng. Sci. 368 (2010), pp. 5355–5377.
  • D.S. Knight and W.B. White, Characterization of diamond films by raman spectroscopy, J. Mater. Res. 4 (1989), pp. 385–393.
  • M. Matthews, M. Pimenta, G. Dresselhaus, M. Dresselhaus, and M. Endo, Origin of dispersive effects of the raman d band in carbon materials, Phys. Rev. B 59 (1999), pp. R6585–R6588.
  • B. Warren, X-ray diffraction in random layer lattices, Phys. Rev. 59 (1941), pp. 693–698.
  • B.E. Warren and P. Bodenstein, The diffraction pattern of fine particle carbon blacks, Acta Crystallograph 18 (1965), pp. 282–286.
  • S. Ergun and R.R. Schehl, Analysis of the structure of a glassy carbon using the fourier transfor m technique, Carbon 11 (1973), pp. 127–138.
  • H. Fujimoto, Theoretical x-ray scattering intensity of carbons with turbostratic stacking and ab stacking structures, Carbon 41 (2003), pp. 1585–1592.
  • A.M. Hindeleh and R. Hosemann, Microparacrystals: the intermediate stage between crystalline and amorphous, J. Mater. Sci. 26 (1991), pp. 5127–5133.
  • R. Brmer and W. Ruland, The limitations of the paracrystalline model of disorder, Die Makromolekulare Chemie 177 (1976), pp. 3601–3617.
  • R. Hosemann and S. Bagchi, Direct Analysis of Diffraction by Matter, North-Holland, Amsterdam, 1962.
  • A.M. Hindeleh and R. Hosemann, Paracrystals representing the physical state of matter, J. Phys. C: Solid State Phys. 21 (1988), pp. 4155–4170.
  • R. Hosemann and A.M. Hindeleh, Structure of crystalline and paracrystalline condensed matter, J. Macromol. Sci. Part B 34 (1995), pp. 327–356.
  • L. Hawelek, J. Koloczek, A. Brodka, J.C. Dore, V. Honkimaki, and A. Burian, Structural studies of disordered carbons by high-energy x-ray diffraction, Philos. Mag. 87 (2007), pp. 4973–4986.
  • A. Burian, A. Ratuszna, and J. Dore, Radial distribution function analysis of the structure of activated carbons, Carbon 36 (1998), pp. 1613–1621.
  • A. Szczygielska, A. Burian, and J.C. Dore, Paracrystalline structure of activated carbons, J. Phys. Condens. Mat. 13 (2001), pp. 5545–5561.
  • J. Kotakoski, A.V. Krasheninnikov, and K. Nordlund, Energetics, structure, and long-range interaction of vacancy-type defects in carbon nanotubes: atomistic simulations, Phys. Rev. B 74 (2006), p. 245420.
  • F. Banhart, J. Kotakoski, and A.V. Krasheninnikov, Structural defects in graphene, ACS Nano 5 (2011), pp. 26–41.
  • M.M. Ugeda, I. Brihuega, F. Hiebel, P. Mallet, J. Veuillen, J.M. Gómez-Rodríguez, and F. Ynduráin, Electronic and structural characterization of divacancies in irradiated graphene, Phys. Rev. B 85 (2012), p. 121402.
  • P.A. Thrower, Chemistry and Physics of Carbon, Vol. 5, Marcel Dekker, New York, NY, 1969.
  • A. Stone and D. Wales, Theoretical studies of icosahedral c60 and some related species, Chem. Phys. Lett. 128 (1986), pp. 501–503.
  • J. Kotakoski, J. Meyer, S. Kurasch, D. Santos-Cottin, U. Kaiser, and A. Krasheninnikov, Stone-wales-type transformations in carbon nanostructures driven by electron irradiation, Phys. Rev. B 83 (2011), p. 245420.
  • L.A. Girifalco, M. Hodak, and R.S. Lee, Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential, Phys. Rev. B 62 (2000), pp. 13104–13110.
  • D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, and S.B. Sinnott, A second-generation reactive empirical bond order (rebo) potential energy expression for hydrocarbons, J. Phys. Conden. Mat. 14 (2002), pp. 783–802.
  • H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, and J.R. Haak, Molecular dynamics with coupling to an external bath, J. Chem. Phys. 81 (1984), pp. 3684–3690.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.