231
Views
11
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Ubiquity of unconventional phenomena associated with critical valence fluctuations in heavy fermion metals

&
Pages 3495-3516 | Received 13 Dec 2016, Accepted 28 Mar 2017, Published online: 25 Apr 2017

References

  • E. Bauer, E.-W. Scheidt, E. Bauer, and G.R. Stewart, Onset of magnetic order in YbCu5-xAlx, Phys. Rev. B 56 (1997), p. 711.
  • C. Seuring, K. Heuser, E.-W. Scheidt, T. Schreiner, E. Bauer, and G.R. Stewart, Evidence of field-induced non-Fermi-liquid behavior in YbCu5-xAlx compounds, Physica B 281 (2000), p. 374.
  • O. Trovarelli, C. Geibel, S. Mederle, C. Langhammer, F.M. Grosche, P. Gegenwart, M. Lang, G. Sparn, and F. Steglich, YbRh2Si2: Pronounced non-Fermi-liquid effects above a low-lying magnetic phase transition, Phys. Rev. Lett. 85 (2000), p. 626.
  • K. Ishida, K. Okamoto, Y. Kawasaki, Y. Kitaoka, O. Trovarelli, C. Geibel, and F. Steglich, YbRh2Si2: Spin fluctuations in the vicinity of a quantum critical point at low magnetic field, Phys. Rev. Lett. 89 (2002), p. 107202.
  • A. Yamamoto, S. Wada, and J.L. Sarrao, Quantum criticality of the heavy-fermion compound YbAuCu4, J. Phys. Soc. Jpn. 76 (2007), p. 063709.
  • S. Wada, A. Yamamoto, K. Ishida, and J.L. Sarrao, Competition between valence and spin fluctuations in the vicinity of the quantum critical point of the heavy fermion compound YbAuCu4, J. Phys.: Condens. Matter 20 (2008), p. 175201.
  • S. Nakatsuji, K. Kuga, Y. Machida, T. Tayama, T. Sakakibara, Y. Karaki, H. Ishimoto, S. Yonezawa, Y. Maeno, E. Pearson, G.G. Lonzarich, L. Balicas, H. Lee, and Z. Fisk, Superconductivity and quantum criticality in the heavy-fermion system β-YbAlB4, Nat. Phys. 4 (2008), p. 603.
  • K. Kuga and S. Nakatsuji, Private communication.
  • K. Deguchi, S. Matsukawa, N.K. Sato, T. Hattori, K. Ishida, H. Takakura, and T. Ishimasa, Quantum critical state in a magnetic quasicrystal, Nat. Mater. 11 (2012), p. 1013. private communication.
  • S. Matsukawa, K. Deguchi, K. Imura, T. Ishimasa, and N.K. Sato, Pressure-driven quantum criticality and T/H scaling in the icosahedral Au-A-Yb approximant, J. Phys. Soc. Jpn. 85 (2016), p. 063706.
  • S. Watanabe and K. Miyake, Quantum valence criticality as an origin of unconventional critical phenomena, Phys. Rev. Lett. 105 (2010), p. 186403.
  • S. Watanabe and K. Miyake, Robustness of quantum criticality of valence fluctuations, J. Phys. Soc. Jpn. 82 (2013), p. 083704.
  • S. Watanabe and K. Miyake, New universality class of quantum criticality in Ce- and Yb-based heavy fermions, J. Phys.: Condens. Matter 24 (2012), p. 294208.
  • T. Moriya and T. Takimoto, Anomalous properties around magnetic instability in heavy electron systems, J. Phys. Soc. Jpn. 64 (1995), p. 960.
  • M. Hatatani, O. Narikiyo, and K. Miyake, A theory of uniform spin susceptibility around the antiferromagnetic quantum critical point, J. Phys. Soc. Jpn. 67 (1998), p. 4002.
  • M. Hatatan, Nature of critical spin fluctuations around the quantum critical point, PhD Thesis, Graduate School of Engineering Science, Osaka University, 2000.
  • Y. Matsumoto, S. Nakatsuji, K. Kuga, Y. Karaki, N. Horie, Y. Shimura, T. Sakakibara, A.H. Nevidomskyy, and P. Coleman, Quantum criticality without tuning in the mixed valence compound β-YbAlB4, Science 331 (2011), p. 316.
  • Y. Matsumoto, K. Kuga, Y. Karaki, Y. Shimura, T. Sakakibara, M. Tokunaga, K. Kindo, and S. Nakatsuji, Field evolution of quantum critical and heavy Fermi-liquid components in the magnetization of the mixed valence compound β-YbAlB4, J. Phys. Soc. Jpn. 84 (2015), p. 024710.
  • K. Deguchi, and N.K. Sato, Private communication.
  • S. Watanabe and K. Miyake, T/B Scaling in β-YbAlB4, J. Phys. Soc. Jpn. 83 (2014), p. 103708.
  • S. Watanabe and K. Miyake, Origin of quantum criticality in Yb-Al-Au approximant crystal and quasicrystal, J. Phys. Soc. Jpn. 85 (2016), p. 063703.
  • D. Jaccard, H. Wilhelm, K. Alami-Yadri, and E. Vargoz, Magnetism and superconductivity in heavy fermion compounds at high pressure, Physica B 259–261 (1999), p. 1.
  • K. Miyake, O. Narikiyo, and Y. Onishi, Superconductivity of Ce-based heavy fermions under pressure: Valence fluctuation mediated pairing associated with valence instability of Ce, Physica B 259–261 (1999), p. 676.
  • A.T. Holmes, D. Jaccard, and K. Miyake, Signatures of valence fluctuations in CeCu2Si2 under high pressure, Phys. Rev. B 69 (2004), p. 024508.
  • H.Q. Yuan, F.M. Grosche, M. Deppe, C. Geibel, G. Sparn, and F. Steglich, Observation of two distinct superconducting phases in CeCu2Si2, Science 302 (2003), p. 2104.
  • G. Knebel, D. Aoki, J.-P. Brison, and J. Flouquet, The quantum critical point in CeRhIn5: A resistivity study, J. Phys. Soc. Jpn. 77 (2008), p. 114704.
  • T. Park, V.A. Sidorov, F. Ronning, J.-X. Zhu, Y. Tokiwa, H. Lee, E.D. Bauer, R. Movshovich, J.L. Sarrao, and J.D. Thompson, Isotropic quantum scattering and unconventional superconductivity, Nature 456 (2008), p. 366.
  • K. Miyake, New trend of superconductivity in strongly correlated electron systems, J. Phys.: Condens. Matter 19 (2007), p. 125201.
  • K. Miyake and S. Watanabe, Unconventional quantum criticality due to critical valence transition, J. Phys. Soc. Jpn. 83 (2014), p. 061006.
  • S. Watanabe, A. Tsuruta, K. Miyake, and J. Flouquet, Magnetic-field control of quantum critical points of valence transition, Phys. Rev. Lett. 100 (2008), p. 236401.
  • S. Watanabe, A. Tsuruta, K. Miyake, and J. Flouquet, Valence fluctuations revealed by magnetic field and pressure scans: Comparison with experiments in YbXCu4 (X = In,Ag,Cd) and CeYIn5 (Y = Ir, Rh), J. Phys. Soc. Jpn. 78 (2009), p. 104706.
  • Y. Hirose, J. Sakaguchi, M. Ohya, M. Matsushita, F. Honda, R. Settai, and Y. Ōnuki, Collapse and enhancement of the heavy fermion state in CeCu6 under magnetic field and pressure, J. Phys. Soc. Jpn. 81 (2012), p. SB009.
  • S. Raymond and D. Jaccard, High pressure resistivity of the heavy fermion compound CeCu6, J. Low Temp. Phys. 120 (2000), p. 107.
  • H.V. Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, Fermi-liquid instabilities at magnetic quantum phase transitions, Rev. Mod. Phys. 79 (2007), p. 1015.
  • S. Doniach, The Kondo lattice and weak antiferromagnetism, Physica B 91 (1977), p. 231.
  • K. Kadowaki and S.B. Woods, Universal relationship of the resistivity and specific heat in heavy-fermion compounds, Solid State Commun. 58 (1986), p. 507.
  • T.M. Rice and K. Ueda, Gutzwiller method for heavy electrons, Phys. Rev. B 34 (1986), p. 6420.
  • H. Shiba, Properties of strongly correlated Fermi liquid in valence fluctuation system -A variational Monte-Carlo study, J. Phys. Soc. Jpn. 55 (1986), p. 2765.
  • K. Miyake, T. Matsuura, and C.M. Varma, Relation between resistivity and effective mass in heavy-fermion and A15 compounds, Solid State Commun. 71 (1989), p. 1149.
  • K. Fujiwara, Y. Hata, K. Kobayashi, K. Miyoshi, J. Takeuchi, Y. Shimaoka, H. Kotegawa, T.C. Kobayashi, C. Geibel, and F. Steglich, High pressure NQR measurement in CeCu2Si2 up to sudden disappearance of superconductivity, J. Phys. Soc. Jpn. 77 (2008), p. 123711.
  • K. Fujiwara, M. Iwata, Y. Okazaki, Y. Ikeda, S. Araki, T.C. Kobayashi, K. Murata, C. Geibel, and F. Steglich, Cu-NQR of CeCu2Si2 under high pressure, J. Phys.: Conf. Ser. 391 (2012), p. 012012.
  • T.C. Kobayashi, K. Fujiwara, K. Takeda, H. Harima, Y. Ikeda, T. Adachi, Y. Ohishi, C. Geibel, and F. Steglich, Valence crossover of Ce ions in CeCu2Si2 under high pressure-Pressure dependence of the unit cell volume and the NQR frequency-, J. Phys. Soc. Jpn. 82 (2013), p. 114701.
  • K. Miyake and H. Maebashi, Huge enhancement of impurity scattering due to critical valence fluctuations in a Ce-based heavy electron system, J. Phys. Soc. Jpn. 71 (2002), p. 1007.
  • K. Miyake and O. Narikiyo, Enhanced impurity scattering due to quantum critical fluctuations: Perturbational approach, J. Phys. Soc. Jpn. 71 (2002), p. 867.
  • Y. Onishi and K. Miyake, Enhanced valence fluctuations caused by f-c Coulomb interaction in Ce-based heavy electrons: Possible origin of pressure-induced enhancement of superconducting transition temperature in CeCu2Ge2 and related compounds, J. Phys. Soc. Jpn. 69 (2000), p. 3955.
  • S. Watanabe, M. Imada, and K. Miyake, Superconductivity emerging near quantum critical point of valence transition, J. Phys. Soc. Jpn. 75 (2006), p. 043710.
  • Y. Nishida, A. Tsuruta, and K. Miyake, Crystalline-electric-field effect on the resistivity of Ce-based heavy fermion systems, J. Phys. Soc. Jpn. 75 (2006), p. 064706.
  • Z. Ren, G. Giriat, G.W. Scheerer, G. Lapertot, and D. Jaccard, Effect of disorder on the pressure-induced superconducting state of CeAu2Si2, Phys. Rev. B 91 (2015), p. 094515.
  • B. Barbara, J. Beille, B. Cheaito, J.M. Laurant, M.F. Rossignol, A. Waintal, and S. Zemirli, On the pressure-temperature phase diagram of the Kondo compound CeAl2, J. Phys. (Paris) 48 (1987), p. 635.
  • A. Ogawa and A. Yoshimori, Effects of anisotropy energy on the ground state of Ce impurities in metals, Prog. Theor. Phys. 53 (1975), p. 351.
  • K. Yamada, K. Yoshida, and K. Hanzawa, Fermi liquid theory on the basis of periodic Anderson hamiltonian with orbital degeneracy, Prog. Theor. Phys. 71 (1984), p. 450.
  • K. Hattori, Meta-orbital transition in heavy-fermion systems: Analysis by dynamical mean field theory and self-consistent renormalization theory of orbital fluctuations, J. Phys. Soc. Jpn. 79 (2010), p. 114717.
  • L.V. Pourovskii, P. Hansmann, M. Ferrero, and A. Georges, Theoretical prediction and spectroscopic fingerprints of an orbital transition in CeCu2Si2, Phys. Rev. Lett. 112 (2014), p. 106407.
  • S. Horn, E. Holland-Moritz, M. Loewenhaupt, F. Steglich, H. Scheuer, A. Benoit, and J. Flouquet, Magnetic neutron scattering and crystal-field states in CeCu2Si2, Phys. Rev. B 23 (1981), p. 3171.
  • T. Willers, F. Strigari, N. Hiraoka, Y.Q. Cai, M.W. Haverkort, K.-D. Tsuei, Y.F. Liao, S. Seiro, C. Geibel, F. Steglich, L.H. Tjeng, and A. Severing, Determining the In-Plane Orientation of the Ground-State Orbital of CeCu2Si2, Phys. Rev. Lett. 109 (2012), p. 046401.
  • J.-P. Rueff, J.M. Ablett, F. Strigari, M. Deppe, M.W. Haverkort, L.H. Tjeng, and A. Severing, Absence of orbital rotation in superconducting CeCu2Ge2, Phys. Rev. B 91 (2015), p. 201108.
  • A.C. Hewson and P.S. Riseborough, An exact limit of a local mixed valence model, Solid State Commun. 22 (1977), p. 379.
  • P. Schlottmann, Simple spinless mixed-valence model. I. Coherent-hybridization states vs. virtual-bound states, Phys. Rev. B 22 (1980), p. 613.
  • T.A. Costi and A.C. Hewson, Static and dynamic properties of the Anderson model with conduction electron screening, Physica C 185–189 (1991), p. 2649.
  • R. Takayama and O. Sakai, Excitation spectra of the Anderson model with charge screening through d- f Coulomb interaction, J. Phys. Soc. Jpn. 66 (1997), p. 1512.
  • I.E. Perakis and C.M. Varma, Non-Fermi-liquid states of a magnetic ion in a metal: Particle-hole symmetric case, Phys. Rev. B 49 (1994), p. 9041.
  • D.I. Khomskii and A.N. Kocharjan, Virtual levels, mixed valence phase and electronic phase transitions in rare earth compounds, Solid State Commun. 18 (1976), p. 985.
  • L.M. Falicov and J.C. Kimball, Simple model for semiconductor-metal transitions: SmB6 and transition-metal oxides, Phys. Rev. Lett. 22 (1969), p. 997.
  • C.M. Varma, Mixed-valence compounds, Rev. Mod. Phys. 48 (1976), p. 219.
  • Y. Onishi and K. Miyake, Sharp valence transition caused by f-c Coulomb interaction in an extended periodic Anderson model, Physica B 281 &282 (2000), p. 191.
  • Y. Saiga, T. Sugibayashi, and D.S. Hirashima, Valence instability and the quantum critical point in an extended periodic Anderson model: Analysis based on the dynamical mean field theory, J. Phys. Soc. Jpn. 77 (2008), p. 114710.
  • T. Sugibayashi, A. Tsuruta, and K. Miyake, Valence fluctuations in an extended periodic Anderson model under a magnetic field, Physica C 470 (2010), p. S550.
  • K. Kubo, Gutzwiller method for an extended periodic Anderson model with the c-f Coulomb interaction, J. Phys. Soc. Jpn. 80 (2011), p. 114711.
  • I. Hagymasi, K. Itai, and J. Solyom, Periodic Anderson model with d-f interaction, Acta Phys. Pol. A 121 (2012), p. 1070.
  • F. Drymiotis, J. Singleton, N. Harrison, L. Balicas, A. Bangura, C.H. Mielke, Z. Fisk, A. Migliori, J.L. Smith, and J.C. Lashley, Suppression of the γ-α structural phase transition in Ce0.8La0.1 Th0.1 by large magnetic fields, J. Phys.: Condens. Matter 17 (2005), p. L77.
  • J. Rossat-Mignod, L.P. Renault, J.L. Jacoud, C. Vettier, P. Lejay, J. Flouquet, E. Walker, D. Jaccard, and A. Amato, Inelastic neutron scattering study of cerium heavy fermion compounds, J. Magn. Magn. Mater. 76–77 (1988), p. 376.
  • J. Flouquet, Y. Haga, P. Haen, D. Braithwaite, G. Knebel, S. Raymond, and S. Kambe, Phase diagram of heavy fermion systems, J. Magn. Magn. Mater. 272–276 (2004), p. 27.
  • G.F. Chen, K. Matsubayashi, S. Ban, K. Deguchi, and N.K. Sato, Competitive coexistence of superconductivity with antiferromagnetism in CeRhIn5, Phys. Rev. Lett. 97 (2006), p. 017005.
  • H. Shishido, R. Settai, H. Harima, and Y. Ōnuki, A drastic change of the Fermi surface at a critical pressure in CeRhIn5: dHvA study under pressure, J. Phys. Soc. Jpn. 74 (2005), p. 1103.
  • S. Watanabe and K. Miyake, Origin of drastic change of Fermi surface and transport anomalies in CeRhIn5 under pressure, J. Phys. Soc. Jpn. 79 (2010), p. 033707.
  • S. Watanabe and K. Miyake, Roles of critical valence fluctuations in Ce- and Yb-based heavy fermion metals, J. Phys.: Condens. Matter 23 (2011), p. 094217.
  • Q. Si, S. Rabello, K. Ingersent, and J.L. Smith, Locally critical quantum phase transitions in strongly correlated metals, Nature 413 (2001), p. 804.
  • P. Coleman, C. Pépin, Q. Si, and R. Ramazashvili, How do Fermi liquids get heavy and die?, J. Phys.: Condens. Matter 13 (2001), p. R723.
  • Q. Si, Global magnetic phase diagram and local quantum criticality in heavy fermion metals, Physica B 378–380 (2006), p. 23.
  • S. Watanabe and K. Miyake, It is noted that the order of the AF transition (as a consequence of Pc ≃ Pv) depend on the detail of the parameter set of the extended PAM and calculation scheme, unpublished.
  • H. Shishido, R. Settai, D. Aoki, S. Ikeda, H. Nakawaki, N. Nakamura, T. Iizuka, Y. Inada, K. Sugiyama, T. Takeuchi, K. Kindo, T.C. Kobayashi, Y. Haga, H. Harima, Y. Aoki, T. Namiki, H. Sato, and Y. Ōnuki, Fermi surface, magnetic and superconducting properties of LaRhIn5 and CeTIn5 (T: Co, Rh and Ir), J. Phys. Soc. Jpn. 71 (2002), p. 162.
  • N.F. Phillips, R.A. Fisher, F. Bouquet, M.F. Hundley, P.G. Pagliuso, J.L. Sarrao, Z. Fisk, and J.D. Thompson, Specific heat of CeRhIn5: the pressure-driven transition from antiferromagnetism to heavy-fermion superconductivity, J. Phys.: Condens. Matter 15 (2003), p. S2095.
  • T. Muramatsu, N. Tateiwa, T.C. Kobayashi, K. Shimizu, K. Amaya, D. Aoki, H. Shishido, Y. Haga, and Y. Ōnuki, Superconductivity of CeRhIn5 under high pressure, J. Phys. Soc. Jpn. 70 (2001), p. 3362.
  • R. Settai, Y. Miyauchi, T. Takeuchi, F. Lévy, I. Sheikin, and Y. Ōnuki, Huge upper critical field and electronic instability in pressure-induced superconductor CeIrSi3 without inversion symmetry in the crystal structure, J. Phys. Soc. Jpn. 77 (2008), p. 073705.
  • T. Sugawara, N. Kimura, H. Aoki, F. Lévy, I. Sheikin, and T. Terashima, Anomalous behavior of the upper-critical-field in heavy-fermion superconductor CeRhSi3, J. Phys. Soc. Jpn. 79 (2010), p. 063701.
  • I. Sheikin, A. Huxley, D. Braithwaite, J.-P. Brison, S. Watanabe, K. Miyake, and J. Flouquet, Anisotropy and pressure dependence of the upper critical field of the ferromagnetic superconductor UGe2, Phys. Rev. B 64 (2001), p. 220503(R).
  • S. Watanabe and K. Miyake, Coupled CDW and SDW fluctuations as an origin of anomalous properties of ferromagnetic superconductor UGe2, J. Phys. Soc. Jpn. 71 (2002), p. 2489.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.