154
Views
1
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Elastic properties and thermal conductivities of fluor-, chlor- and brom-barium apatites predicted by first-principles simulations

, &
Pages 1708-1728 | Received 18 Jan 2017, Accepted 28 Mar 2017, Published online: 07 Apr 2017

References

  • M.E. Fleet and Y. Pan, Site preference of Nd in fluorapatite [Ca10(PO4)6F2], J. Solid State Chem. 112 (1994), pp. 78–81. Doi:10.1006/jssc.1994.1268.
  • K. Lodders and B. Fegley, The Planetary Scientist’s Companion, Oxford University Press, Oxford, 1998.
  • M. Vallet-Regí, Ceramics for medical applications, J. Chem. Soc., Dalton Trans. (2001), pp. 97–108. Doi:10.1039/B007852M.
  • F.J. Cruz, J.N. Canongia Lopes, J.C. Calado, and M.E. Minas da Piedade, A molecular dynamics study of the thermodynamic properties of calcium apatites. 1. Hexagonal phases, J. Phys. Chem. B 109 (2005), pp. 24473–24479. Doi:10.1021/jp054304p.
  • F.J. Cruz, J.N. Canongia Lopes, and J.C. Calado, Molecular dynamics study of the thermodynamic properties of calcium apatites. 2. Monoclinic phases, J. Phys. Chem. B 110 (2006), pp. 4387–4392. Doi:10.1021/jp055808q.
  • O. Hochrein, R. Kniep, and D. Zahn, Atomistic simulation study of the order/disorder (monoclinic to hexagonal) phase transition of hydroxyapatite, Chem. Mater. 17 (2005), pp. 1978–1981. Doi:10.1021/cm0401903.
  • M. Mathew, I. Mayer, B. Dickens, and L.W. Schroeder, Substitution in barium-fluoride apatite: The crystal structures of Ba10(PO4)6F2, Ba6La2Na2(PO4)6F2 and Ba4Nd3Na3(PO4)6F2, J. Solid State Chem. 28 (1979), pp. 79–95. Doi:10.1016/0022-4596(79)90061-6.
  • M. Kikuchi, A. Yamazaki, M. Akao, and H. Aoki, Cytotoxicity of synthetic barium hydroxyapatite, Bio-Medical Mater. Eng. 6 (1996), pp. 405–413. Doi:10.3233/BME-1996-6602.
  • G. Kaur, O.P. Pandey, K. Singh, D. Homa, B. Scott, and G. Pickrell, A review of bioactive glasses: Their structure, properties, fabrication and apatite formation, J. Biomed. Mater. Res. A 102 (2014), pp. 254–274. Doi:10.1002/jbm.a.34690.
  • P. Parhi, A. Ramanan, and A.R. Ray, Synthesis of nano-sized alkaline-earth hydroxyapatites through microwave assisted metathesis route, Mater. Lett. 60 (2006), pp. 218–221. Doi:10.1016/j.matlet.2005.08.019
  • C. Austin, T.M. Smith, A. Bradman, K. Hinde, R. Joannes-Boyau, D. Bishop, D.J. Hare, P. Doble, B. Eskenazi, and M. Arora, Barium distributions in teeth reveal early-life dietary transitions in primates, Nature 498 (2013), pp. 216–219. Doi:10.1038/nature12169.
  • Q. Zeng, H. Liang, G. Zhang, M.D. Birowosuto, Z. Tian, H. Lin, Y. Fu, P. Dorenbos, and Q. Su, Luminescence of Ce3+ activated fluoro-apatites M5(PO4)3F (M= Ca, Sr, Ba) under VUV-UV and X-ray excitation, J. Phys.: Condens. Matter 18 (2006), p. 9549. Doi:10.1088/0953-8984/18/42/002.
  • Z. Xiu, M. Lü, S. Liu, G. Zhou, and H. Zhang, Synthesis and photoluminescence of Ce3+-doped barium haloapatites nanocrystals, J. Alloys Compd. 416 (2006), pp. 236–238. Doi:10.1016/j.jallcom.2005.08.049.
  • G. Ju, Y. Hu, L. Chen, and X. Wang, Persistent luminescence and its mechanism of Ba5(PO4)3Cl: Ce3+, Eu2+, J. Appl. Phys. 111 (2012), p. 113508. Doi:10.1063/1.4723646.
  • C. Gaillard, N. Chevarier, N. Millard-Pinard, P. Delichere, and P. Sainsot, Thermal diffusion of molybdenum in apatite, Nucl. Instrum. Methods Phys. Res. B 161 (2000), pp. 646–650. Doi:10.1016/S0168-583X(99)00894-0.
  • P. Martin, G. Carlot, A. Chevarier, C. Den-Auwer, and G. Panczer, Mechanisms involved in thermal diffusion of rare earth elements in apatite, J. Nucl. Mater. 275 (1999), pp. 268–276. Doi:10.1016/S0022-3115(99)00126-9.
  • J.M. Hughes, Presidential Address. The many facets of apatite, Am. Mineral. 100 (2015), pp. 1033–1039. Doi:10.2138/am-2015-5193.
  • V. Louis-Achille, L. De Windt, and M. Defranceschi, Local density calculation of structural and electronic properties for Ca10(PO4)6F2, Comput. Mater. Sci. 10 (1998), pp. 346–350. Doi:10.1016/S0927-0256(97)00137-7.
  • J. Terra, M. Jiang, and D.E. Ellis, Characterization of electronic structure and bonding in hydroxyapatite: Zn substitution for Ca, Philos. Mag. A 82 (2002), pp. 2357–2377. Doi:10.1080/01418610208235744.
  • L. Calderin, M.J. Stott, and A. Rubio, Electronic and crystallographic structure of apatites, Phys. Rev. B 67 (2003), p. 134106. Doi:10.1103/PhysRevB.67.134106.
  • P. Rulis, L. Ouyang, and W.Y. Ching, Electronic structure and bonding in calcium apatite crystals: Hydroxyapatite, fluorapatite, chlorapatite, and bromapatite, Phys. Rev. B 70 (2004), p. 155104. Doi:10.1103/PhysRevB.70.155104.
  • C.J. Duan, X.Y. Wu, W. Liu, H.H. Chen, X.X. Yang, and J.T. Zhao, X-ray excited luminescent properties of apatitic compounds Ba5(PO4)3X (X: OH-, Cl-, Br-); structure and hydroxyl ion conductivity of barium hydroxylapatite, J. Alloys Compd. 396 (2005), pp. 86–91. Doi:10.1016/j.jallcom.2004.11.064.
  • O.S. Bondareva and Y.A. Malinovskii, Crystal structure of synthetic Ba hydroxylapatite, Kristallografiya 31 (1986), pp. 233–236.
  • E. Getman, S. Loboda, A. Ignatov, and P. Demchenko, Carbonate-containing barium hydroxyapatite synthesized by solid state reactions, Polish J. Chem. 78 (2004), pp. 35–43. Doi:10.1002/chin.200416023.
  • M. Matos, J. Terra, and D.E. Ellis, Semiempirical electronic structure calculation on Ca and Pb apatites, Int. J. Quantum Chem. 109 (2009), pp. 849–860. Doi:10.1002/qua.21887.
  • R. Babu, H. Jena, K.V.G. Kutty, and K. Nagarajan, Thermodynamic functions of Ba10(PO4)6Cl2, Sr10(PO4)6Cl2 and Ca10(PO4)6Cl2, Thermochim. Acta 526 (2011), pp. 78–82. Doi:10.1016/j.tca.2011.08.027.
  • P.V. Balachandran, K. Rajan, and J.M. Rondinelli, Electronically driven structural transitions in A10(PO4)6F2 apatites (A= Ca, Sr, Pb, Cd and Hg), Acta Crystallogr. Sect. B 70 (2014), pp. 612–615. Doi:10.1107/S2052520614003710.
  • J.H. Zhang, Y.H. Duan, L.S. Ma, and R.Y. Li, Structural properties, electronic structure and bonding of Ba10(PO4)6X2 (X= F, Cl and Br), J. Alloys Compd. 680 (2016), pp. 121–128. Doi:10.1016/j.jallcom.2016.04.114.
  • C.S. Michael, Z. Li, and R.C. Bradt, Single-crystal elastic constants of fluorapatite, Ca5F(PO4)3, J. Appl. Phys. 75 (1994), pp. 7784–7787. Doi:10.1063/1.357030.
  • R. Snyders, D. Music, D. Sigumonrong, B. Schelnberger, J. Jensen, and J.M. Schneider, Experimental and ab initio study of the mechanical properties of hydroxyapatite, Appl. Phys. Lett. 90 (2007), p. 193902. Doi:10.1063/1.2738386.
  • F. Ren, X. Lu, and Y. Leng, Ab initio simulation on the crystal structure and elastic properties of carbonated apatite, J. Mech. Behav. Biomed. Mater. 26 (2013), pp. 59–67. Doi:10.1016/j.jmbbm.2013.05.030.
  • S.S. Bhat, U.V. Waghmare, and U. Ramamurty, First-principles study of structure, vibrational, and elastic properties of stoichiometric and calcium-deficient hydroxyapatite, Cryst. Growth Des. 14 (2014), pp. 3131–3141. Doi:10.1021/cg5004269.
  • C.X. Li, Y.H. Duan, and W.C. Hu, Electronic structure, elastic anisotropy, thermal conductivity and optical properties of calcium apatite Ca5(PO4)3X (X= F, Cl or Br), J. Alloys Compd. 619 (2015), pp. 66–77. Doi:10.1016/j.jallcom.2014.09.022.
  • S. Aryal, K. Matsunaga, and W.Y. Ching, Ab initio simulation of elastic and mechanical properties of Zn-and Mg-doped hydroxyapatite (HAP), J. Mech. Behav. Biomed. Mater. 47 (2015), pp. 135–146. Doi:10.1016/j.jmbbm.2015.03.018.
  • M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne, First-principles simulation: Ideas, illustrations and the CASTEP code, J. Phys.: Condens. Matter. 14 (2002), pp. 2717–2744. Doi:10.1088/0953-8984/14/11/301.
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996), pp. 3865–3868. Doi:10.1103/PhysRevLett.77.3865.
  • F. Birch, Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300°K, J. Geophys. Res. 83 (1978), pp. 1257–1268. Doi:10.1029/JB083iB03p01257.
  • D.C. Wallace, Thermodynamics of Crystals, Wiley, New York, NY, 1972.
  • E. Dieulesaint and D. Royer, Elastic Waves in Solids, Wiley, New York, NY, 1980.
  • B.B. Karki, G.J. Ackland, and J. Crain, Elastic instabilities in crystals from ab initio stress-strain relations, J. Phys.: Condens. Matter 9 (1997), p. 8579. Doi:10.1088/0953-8984/9/41/005.
  • X. Gao, Y. Jiang, R. Zhou, and J. Feng, Stability and elastic properties of Y-C binary compounds investigated by first principles calculations, J. Alloys Compd. 587 (2014), pp. 819–826. Doi:10.1016/j.jallcom.2013.11.005.
  • H. Ozisik, E. Deligoz, K. Colakoglu, and G. Surucu, Structural and mechanical stability of rare-earth diborides, Chin. Phys. B 4 (2013), p. 046202. Doi:10.1088/1674-1056/22/4/046202.
  • W. Voigt, Lehrbuch der Kristallphysik [Handbook on crystal physics], Taubner, Leipzig, 1928.
  • A. Reuss, Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle [Calculation of the yield of mixed crystals on the basis of the plasticity condition for single crystals], Z. Angew. Math. Mech. 9 (1929), pp. 49–58. Doi:10.1002/zamm.19290090104.
  • R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. A 65 (1952), p. 349. Doi:10.1088/0370-1298/65/5/307.
  • N. Korozlu, K. Colakoglu, E. Deligoz, and S. Aydin, The elastic and mechanical properties of MB12 (M= Zr, Hf, Y, Lu) as a function of pressure, J. Alloys Compd. 546 (2013), pp. 157–164. Doi:10.1016/j.jallcom.2012.08.062.
  • Y. Li, The anisotropic behavior of Poisson’s ratio, Young’s modulus, and shear modulus in hexagonal materials, Phys. Stat. Sol. (a) 38 (1976), pp. 171–175. Doi:10.1002/pssa.2210380119.
  • S. Lees and F.R. Rollins, Anisotropy in hard dental tissues, J. Biomech. 5 (1972), pp. 557–566. Doi:10.1016/0021-9290(72)90027-9.
  • Y.R. Jeng, T.T. Lin, H.M. Hsu, H.J. Chang, and D.B. Shieh, Human enamel rod presents anisotropic nanotribological properties, J. Mech. Behav. Biomed. Mater. 4 (2011), pp. 515–522. Doi:10.1016/j.jmbbm.2010.12.002.
  • J.J. Lewandowski, W.H. Wang, and A.L. Greer, Intrinsic plasticity or brittleness of metallic glasses, Philos. Mag. Lett. 85 (2005), pp. 77–87. Doi:10.1080/09500830500080474.
  • J.P. Schaffer, A. Saxena, S.D. Antolovich, T.H. Sanders, and S.B. Warner, The Science and Design of Engineering Materials, Irwin, Chicago, IL, 1995.
  • H.D. Wagner and S. Weiner, On the relationship between the microstructure of bone and its mechanical stiffness, J. Biomech. 25 (1992), pp. 1311–1320. Doi:10.1016/0021-9290(92)90286-A.
  • A. Engstrom, Ultrastructure of bone mineral, in Bone as a Tissue, K. Rodahl, J.T. Nicholson, and E.M. Brown Jr., eds., McGraw-Hill, New York, 1960, p. 251.
  • A.K.M.A. Islam, A.S. Sikder, and F.N. Islam, NbB2: A density functional study, Phys. Lett. A 350 (2006), pp. 288–292. Doi:10.1016/j.physleta.2005.09.085.
  • S.I. Ranganathan and M. Ostoja-Starzewski, Universal elastic anisotropy index, Phys. Rev. Lett. 101 (2008), p. 055504. Doi:10.1103/PhysRevLett.101.055504.
  • D.H. Chung and W.R. Buessem, The elastic anisotropy of crystals, in Anisotropy in Single Crystal Refractory Compounds, F.W. Vahldiek and S.A. Mersol, eds., Plenum Press, New York, 1968, pp. 217–245.
  • P. Ravindran, L. Fast, P.A. Korzhavyi, and B. Johansson, Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2, J. Appl. Phys. 84 (1998), pp. 4891–4904. Doi:10.1063/1.368733.
  • G. Steinle-Neumann, L. Stixtude, and R.E. Cohen, First-principles elastic constants for the hcp transition metals Fe Co, and Re at high pressure, Phys. Rev. B 60 (1999), p. 791. Doi:10.1103/PhysRevB.60.791.
  • M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Clarendon, Oxford, 1954.
  • J.F. Nye, Physical Properties of Crystals, Oxford University Press, Oxford, 1985.
  • W.C. Hu, Y. Liu, D.J. Li, X.Q. Zeng, and C.S. Xu, First-principles study of structural and electronic properties of C14-type Laves phase Al2Zr and Al2Hf, Comput. Mater. Sci. 83 (2014), pp. 27–34. Doi:10.1016/j.commatsci.2013.10.029.
  • K. Brugger, Determination of third-order elastic coefficients in crystals, J. Appl. Phys. 36 (1965), pp. 768–773. Doi:10.1063/1.1714216.
  • L. Sun, Y. Gao, B. Xiao, Y. Li, and G. Wang, Anisotropic elastic and thermal properties of titanium borides by first-principles calculations, J. Alloys Compd. 579 (2013), pp. 457–467. Doi:10.1016/j.jallcom.2013.06.119.
  • D. Music, A. Houben, R. Dronskowski, and J.M. Schneider, Ab initio study of ductility in M2AlC (M= Ti, V, Cr), Phys. Rev. B 75 (2007), p. 174102. Doi:10.1103/PhysRevB.75.174102.
  • D.R. Clarke, Materials selection guidelines for low thermal conductivity thermal barrier coatings, Surf. Coat. Technol. 163–164 (2003), pp. 67–74. Doi:10.1016/S0257-8972(02)00593-5.
  • C. Dhakal, S. Aryal, R. Sakidja, and W.Y. Ching, Approximate lattice thermal conductivity of MAX phases at high temperature, J. Eur. Ceram. Soc. 35 (2015), pp. 3203–3212. Doi:10.1016/j.jeurceramsoc.2015.04.013.
  • D.G. Cahill, S.K. Watson, and R.O. Pohl, Lower limit to the thermal conductivity of disordered crystals, Phys. Rev. B 46 (1992), p. 6131. Doi:10.1103/PhysRevB.46.6131.
  • Y.H. Duan, Y. Sun, and L. Lu, Thermodynamic properties and thermal conductivities of TiAl3-type intermetallics in Al-Pt-Ti system, Comput. Mater. Sci. 68 (2013), pp. 229–233. Doi:10.1016/j.commatsci.2012.11.012.
  • J. Callaway, Model for lattice thermal conductivity at low temperatures, Phys. Rev. 113 (1959), p. 1046. Doi:10.1103/PhysRev.113.1046.
  • J. Feng, B. Xiao, C.L. Wan, Z.X. Qu, Z.C. Huang, J.C. Chen, R. Zhou, and W. Pan, Electronic structure, mechanical properties and thermal conductivity of Ln2Zr2O7 (Ln= La, Pr, Nd, Sm, Eu and Gd) pyrochlore, Acta Mater. 59 (2011), pp. 1742–1760. Doi:10.1016/j.actamat.2010.11.041.
  • B. Liu, J.Y. Wang, F.Z. Li, and Y.C. Zhou, Theoretical elastic stiffness, structural stability and thermal conductivity of La2T2O7 (T = Ge, Ti, Sn, Zr, Hf) pyrochlore, Acta Mater. 58 (2010), pp. 4369–4377. Doi:10.1016/j.actamat.2010.04.031.
  • X. Zhan, Z. Li, B. Liu, J. Wang, Y. Zhou, and Z. Hu, Theoretical prediction of elastic stiffness and minimum lattice thermal conductivity of Y3Al5O12, YAlO3 and Y4Al2O9, J. Am. Ceram. Soc. 95 (2012), pp. 1429–1434. Doi:10.1111/j.1551-2916.2012.05118.x.
  • J. Feng, B. Xiao, R. Zhou, and W. Pan, Anisotropy in elasticity and thermal conductivity of monazite-type REPO4 (RE= La, Ce, Nd, Sm, Eu and Gd) from first-principles calculations, Acta Mater. 61 (2013), pp. 7364–7383. Doi:10.1016/j.actamat.2013.08.043.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.