277
Views
5
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Evolution pattern of collision cascades in bcc V with different grain boundary structures: an atomic scale study

&
Pages 1803-1823 | Received 30 Dec 2016, Accepted 29 Mar 2017, Published online: 26 Apr 2017

References

  • N. Baluc, K. Abe, J.L. Boutard, V.M. Chernov, E. Diegele, S. Jitsukawa, A. Kimura, R.L. Klueh, A. Kohyama, R.J. Kurtz, R. Lässer, H. Matsui, A. Möslang, T. Muroga, G.R. Odette, M.Q. Tran, B. van der Schaaf, Y. Wu, J. Yu, and S.J. Zinkle, Status of R&D activities on materials for fusion power reactors, Nucl. Fusion 47 (2007), pp. S696–S717.10.1088/0029-5515/47/10/S18
  • R.J. Kurtz, K. Abe, V.M. Chernov, V.A. Kazakov, G.E. Lucas, H. Matsui, T. Muroga, G.R. Odette, D.L. Smith, and S.J. Zinkle, Critical issues and current status of vanadium alloys for fusion energy applications, J. Nucl. Mater. 283–287 (2000), pp. 70–78.10.1016/S0022-3115(00)00351-2
  • R.J. Kurtz, K. Abe, V.M. Chernov, D.T. Hoelzer, H. Matsui, T. Muroga, and G.R. Odette, Recent progress on development of vanadium alloys for fusion, J. Nucl. Mater. 329–333 (2004), pp. 47–55.10.1016/j.jnucmat.2004.04.299
  • E. Trentini, B. Riccardi, and M. Labanti, Fatigue and creep behaviour of a SiC/SiC composite for nuclear fusion reactor applications, Adv. Sci. Technol. 45 (2006), pp. 1444–1449.10.4028/www.scientific.net/AST.45
  • I. Chant and K.L. Murty, Structural materials issues for the next generation fission reactors, JOM 62 (2010), pp. 67–74.10.1007/s11837-010-0142-3
  • P. Yvon and F. Carré, Structural materials challenges for advanced reactor systems, J. Nucl. Mater. 385 (2009), pp. 217–222.10.1016/j.jnucmat.2008.11.026
  • J. Bethin and A. Tobin, Application of vanadium and vanadium alloys to a fusion reactor blanket, J. Nucl. Mater. 122 (1984), pp. 864–868.10.1016/0022-3115(84)90714-1
  • M. Rose, A.G. Balogh, and H. Hahn, Instability of irradiation induced defects in nanostructured materials, Nucl. Instrum. Methods B 127–128 (1997), pp. 119–122.10.1016/S0168-583X(96)00863-4
  • Y. Chimi, A. Iwase, N. Ishikawa, M. Kobiyama, T. Inami, and S. Okuda, Accumulation and recovery of defects in ion-irradiated nanocrystalline gold, J. Nucl. Mater. 297 (2001), pp. 355–357.10.1016/S0022-3115(01)00629-8
  • N. Nita, R. Schaeublin, and M. Victoria, Impact of irradiation on the microstructure of nanocrystalline materials, J. Nucl. Mater. 329–333 (2004), pp. 953–957.10.1016/j.jnucmat.2004.04.058
  • N. Nita, R. Schaeublin, M. Victoria, and R.Z. Valiev, Effects of irradiation on the microstructure and mechanical properties of nanostructured materials, Philos. Mag. 85 (2005), pp. 723–735.10.1080/14786430412331319965
  • K. Arakawa, K. Ono, M. Isshiki, K. Mimura, M. Uchikoshi, and H. Mori, Observation of the one-dimensional diffusion of nanometer-sized dislocation loops, Science 318 (2007), pp. 956–959.10.1126/science.1145386
  • S.Z. Xu, Z.M. Hao, Y.Q. Su, W.J. Hu, Y. Yu, and Q. Wan, Atomic collision cascades on void evolution in vanadium, Radiat. Eff. Defects Solids 167 (2012), pp. 12–25.10.1080/10420150.2011.613393
  • T. Diaz de la Rubia, H.M. Zbib, T.A. Khraishi, B.D. Wirth, M. Victoria, and M.J. Caturla, Multiscale modelling of plastic flow localization in irradiated materials, Nature 406 (2000), pp. 871–874.10.1038/35022544
  • B.N. Singh, A.J.E. Foreman, and H. Trinkaus, Radiation hardening revisited: role of intracascade clustering, J. Nucl. Mater. 249 (1997), pp. 103–115.10.1016/S0022-3115(97)00231-6
  • M.A. Shaikh, M. Iqbal, M. Ahmad, J.I. Akhtar, and K.A. Shoaib, Precipitation study of heat-treated Incoloy 825 by scanning electron microscopy, J. Mater. Sci. Lett. 11 (1992), pp. 1009–1011.10.1007/BF00729911
  • R. Yamada, S.J. Zinkle, and G.P. Pells, Defect formation in ion-irradiated Al2O3 and MgAl2O4: effects of grain boundaries and fusion transmutation products, J. Nucl. Mater. 191–194 (1992), pp. 640–644.10.1016/S0022-3115(09)80125-6
  • V.K. Alimov, J. Roth, and M. Mayer, Depth distribution of deuterium in single- and polycrystalline tungsten up to depths of several micrometers, J. Nucl. Mater. 337–339 (2005), pp. 619–623.10.1016/j.jnucmat.2004.10.082
  • N. Swaminathan, P.J. Kamenski, D. Morgan, and I. Szlufarska, Effects of grain size and grain boundaries on defect production in nanocrystalline 3C–SiC, Acta Mater. 58 (2010), pp. 2843–2853.10.1016/j.actamat.2010.01.009
  • T.D. Shen, S. Feng, M. Tang, J.A. Valdez, Y. Wang, and K.E. Sickafus, Enhanced radiation tolerance in nanocrystalline MgGa2O4, Appl. Phys. Lett. 90 (2007), p. 263115.10.1063/1.2753098
  • A. Misra, M.J. Demkowicz, X. Zhang, and R.G. Hoagland, The radiation damage tolerance of ultra-high strength nanolayered composites, JOM 59 (2007), pp. 62–65.10.1007/s11837-007-0120-6
  • H.A. Atwater and W.L. Brown, Grain boundary mediated amorphization in silicon during ion irradiation, Appl. Phys. Lett. 56 (1990), pp. 30–32.10.1063/1.102637
  • F.J. Pérez Pérez and R. Smith, Modelling radiation effects at grain boundaries in bcc iron, Nucl. Instrum. Methods B. 153 (1999), pp. 136–141.10.1016/S0168-583X(99)00197-4
  • M. Samaras, P.M. Derlet, H. Van Swygenhoven, and M. Victoria, Stacking fault tetrahedra formation in the neighbourhood of grain boundaries, Nucl. Instrum. Methods B 202 (2003), pp. 51–55.10.1016/S0168-583X(02)01829-3
  • M. Samaras, P.M. Derlet, H. Van Swygenhoven, and M. Victoria, Radiation damage near grain boundaries, Philos. Mag. 83 (2003), pp. 3599–3607.10.1080/14786430310001600222
  • P.M. Derlet, H. Van Swygenhoven, and A. Hasnaoui, Atomistic simulation of dislocation emission in nanosized grain boundaries, Philos. Mag. 83 (2003), pp. 3569–3575.10.1080/14786430310001599397
  • A. Suzuki and Y. Mishin, Atomic mechanisms of grain boundary diffusion: Low versus high temperatures, J. Mater. Sci. 40 (2005), pp. 3155–3161.10.1007/s10853-005-2678-0
  • M.A. Tschopp, M.F. Horstemeyer, F. Gao, X. Sun, and M. Khaleel, Energetic driving force for preferential binding of self-interstitial atoms to Fe grain boundaries over vacancies, Scr. Mater. 64 (2011), pp. 908–911.10.1016/j.scriptamat.2011.01.031
  • M.A. Tschopp and D.L. Mcdowell, Asymmetric tilt grain boundary structure and energy in copper and aluminum, Philos. Mag. 87 (2007), pp. 3871–3892.10.1080/14786430701455321
  • M. Rajagopalan, M.A. Tschopp, and K.N. Solanki, Grain boundary segregation of interstitial and substitutional impurity atoms in alpha-iron, JOM 66 (2013), pp. 129–138.
  • M.A. Tschopp, K.N. Solanki, F. Gao, X. Sun, M.A. Khaleel, and M.F. Horstemeyer, Probing grain boundary sink strength at the nanoscale: Energetics and length scales of vacancy and interstitial absorption by grain boundaries in α-Fe, Phys. Rev. B 85 (2012), pp. 064108-1​–​064108-21.
  • H. Kurishita, T. Kuwabara, M. Hasegawa, S. Kobayashi, and K. Nakai, Microstructural control to improve the resistance to radiation embrittlement in vanadium, J. Nucl. Mater. 343 (2005), pp. 318–324.10.1016/j.jnucmat.2004.12.017
  • X.F. Tian, T. Gao, H.X. Xiao, and C.H. Lu, Dynamical simulations of displacement cascades near symmetrical tilt grain boundaries in UO2, Indian J. Phys. 88 (2013), pp. 137–143.
  • C. Lu, L. Niu, N. Chen, K. Jin, T. Yang, P. Xiu, Y. Zhang, F. Gao, H. Bei, S. Shi, M.-R. He, I.M. Robertson, W.J. Weber, and L. Wang, Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys, Nat. Commun. 7 (2016), p. 13564.10.1038/ncomms13564
  • Z. Al Tooq and S.D. Kenny, Modelling radiation damage at grain boundaries in fcc Nickel and Ni-based alloy using long time scale dynamics techniques, Nucl. Instrum. Methods B 303 (2013), pp. 9–13.10.1016/j.nimb.2012.10.027
  • X.M. Bai, A.F. Voter, R.G. Hoagland, M. Nastasi, and B.P. Uberuaga, Efficient annealing of radiation damage near grain boundaries via interstitial emission, Science 327 (2010), pp. 1631–1634.10.1126/science.1183723
  • B.P. Uberuaga, L.J. Vernon, E. Martinez, and A.F. Voter, The relationship between grain boundary structure, defect mobility, and grain boundary sink efficiency, Sci. Rep. 5 (2015), pp. 1–9.10.1038/srep09095
  • X.-M. Bai, L.J. Vernon, R.G. Hoagland, A.F. Voter, M. Nastasi, and B.P. Uberuaga, Role of atomic structure on grain boundary-defect interactions in Cu, Phys. Rev. B 85 (2012), pp. ​214103-1–​214103-10.
  • C.G. Zhang, W.H. Zhou, Y.G. Li, Z. Zeng, and X. Ju, Primary radiation damage near grain boundary in bcc tungsten by molecular dynamics simulations, J. Nucl. Mater. 458 (2015), pp. 138–145.10.1016/j.jnucmat.2014.11.135
  • X. Li, W. Liu, Y. Xu, C.S. Liu, B.C. Pan, Y. Liang, Q.F. Fang, J.-L. Chen, G.N. Luo, G.-H. Lu, and Z. Wang, Radiation resistance of nano-crystalline iron: coupling of the fundamental segregation process and the annihilation of interstitials and vacancies near the grain boundaries, Acta Mater. 109 (2016), pp. 115–127.10.1016/j.actamat.2016.02.028
  • S.G. Psakhie, K.P. Zolnikov, D.S. Kryzhevich, A.V. Zheleznyakov, and V.M. Chernov, Evolution of atomic collision cascades in vanadium crystal with internal structure, Crystallogr. Rep. 54 (2009), pp. 1002–1010.10.1134/S1063774509060157
  • A. Arjhangmehr, S.A.H. Feghhi, A. Esfandiyarpour, and F. Hatami, An energetic and kinetic investigation of the role of different atomic grain boundaries in healing radiation damage in nickel, J. Mater. Sci. 51 (2015), pp. 1017–1031.
  • A. Esfandiarpour, S.A.H. Feghhi, and A.A. Shokri, Effects of atomic grain boundary structures on primary radiation damage in α-Fe, Nucl. Instrum. Methods B 362 (2015), pp. 1–8.10.1016/j.nimb.2015.08.074
  • I.J. Beyerlein, A. Caro, M.J. Demkowicz, N.A. Mara, A. Misra, and B.P. Uberuaga, Radiation damage tolerant nanomaterials, Mater. Today 16 (2013), pp. 443–449.10.1016/j.mattod.2013.10.019
  • M.J. Demkowicz, R.G. Hoagland, and J.P. Hirth, Interface structure and radiation damage resistance in Cu-Nb multilayer nanocomposites, Phys. Rev. Lett. 100 (2008), pp. ​136102-1–136102-4.
  • K. Hattar, M.J. Demkowicz, A. Misra, I.M. Robertson, and R.G. Hoagland, Arrest of He bubble growth in Cu–Nb multilayer nanocomposites, Scr. Mater. 58 (2008), pp. 541–544.10.1016/j.scriptamat.2007.11.007
  • Y. Kim, J. Baek, S. Kim, S. Kim, S. Ryu, S. Jeon, and S.M. Han, Radiation resistant vanadium-graphene nanolayered composite, Sci. Rep. 6 (2016), pp. 1​–9.
  • H. Ogawa, GBstudio: A builder software on periodic models of CSL boundaries for molecular simulation, Mater. Trans. 47 (2006), pp. 2706–2710.10.2320/matertrans.47.2706
  • S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1995), pp. 1–19.10.1006/jcph.1995.1039
  • S. Han, L.A. Zepeda-Ruiz, G.J. Ackland, R. Car, and D.J. Srolovitz, Interatomic potential for vanadium suitable for radiation damage simulations, J. Appl. Phys. 93 (2003), pp. 3328–3335.10.1063/1.1555275
  • J.F. Ziegler, M.D. Ziegler, and J.P. Biersack, SRIM – The stopping and range of ions in matter, Nucl. Instrum. Methods B 268 (2010), pp. 1818–1823.10.1016/j.nimb.2010.02.091
  • A. Arjhangmehr and S.A.H. Feghhi, Irradiation deformation near different atomic grain boundaries in α-Zr: An investigation of thermodynamics and kinetics of point defects, Sci. Rep. 6 (2016), p. 23333.10.1038/srep23333
  • F. Hatami, S.A.H. Feghhi, A. Arjhangmehr, and A. Esfandiarpour, Interaction of primary cascades with different atomic grain boundaries in α-Zr: An atomic scale study, J. Nucl. Mater. 480 (2016), pp. 362–373.10.1016/j.jnucmat.2016.05.036
  • A. Esfandiarpour, S.A.H. Feghhi, and A. Arjhangmehr, Atomistic investigation of Cr influence on primary radiation damage in Fe-12 at.% Cr grain boundaries, Model. Simul. Mater. Sci. 24 (2016), p. 065008.10.1088/0965-0393/24/6/065008
  • A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO – The Open Visualization Tool, Model. Simul. Mater. Sci. 18 (2010), p. 015012.10.1088/0965-0393/18/1/015012
  • J.D. Honeycutt and H.C. Andersen, Molecular dynamics study of melting and freezing of small Lennard-Jones clusters, J. Phys. Chem. 91 (1987), pp. 4950–4963.10.1021/j100303a014
  • A. Stukowski, Structure identification methods for atomistic simulations of crystalline materials, Model. Simul. Mater. Sci. 20 (2012), p. 045021.10.1088/0965-0393/20/4/045021
  • C. Di, J. Wang, T. Chen, and L. Shao, Defect annihilation at grain boundaries in alpha-Fe, Sci. Rep. 3 (2013), pp. 1​–5.
  • T. Noda, A.K. Kambham, C. Vrancken, A. Thean, N. Horiguchi, and W. Vandervorst, Analysis of dopant diffusion and defects in Fin structure using an atomistic kinetic Monte Carlo approach, IEEE International Electron Devices Meeting (IEDM), IEEE, Washington, DC, 2013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.