153
Views
3
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Yttria catalyzed microstructural modifications in oxide dispersion strengthened V–4Cr–4Ti alloys synthesized by field assisted sintering technique

, , , , &
Pages 1847-1865 | Received 02 Nov 2016, Accepted 12 Apr 2017, Published online: 26 Apr 2017

References

  • D.L. Smith, H.M. Chung, B.A. Loomis, H. Matsui, S. Votinov, and W. Van Witzenburg, Development of vanadium-base alloys for fusion first-wall – Blanket applications. Fusion Eng. Des. 29 (1995), pp. 399–410. doi:10.1016/0920-3796(95)80046-Z.
  • D.L. Smith, H.M. Chung, B.A. Loomis, and H.C. Tsai, Reference vanadium alloy V–4Cr–4Ti for fusion application. J. Nucl. Mater. 233 (1996), pp. 356–363. doi:10.1016/S0022-3115(96)00231-0.
  • H.M. Chung, B.A. Loomis, and D.L. Smith, Development and testing of vanadium alloys for fusion applications. J. Nucl. Mater. 239 (1996), pp. 139–156. doi:10.1016/S0022-3115(96)00676-9.
  • S.J. Zinkle, H. Matsui, D.L. Smith, A.F. Rowcliffe, E. Van Osch, K. Abe, and K.A. Kazakov, Research and development on vanadium alloys for fusion applications. J. Nucl. Mater. 258 (1998), pp. 205–214. doi:10.1016/S0022-3115(98)00269-4
  • D.L. Smith, H.M. Chung, H. Matsui, and A.F. Rowcliffe, Progress in vanadium alloy development for fusion applications. Fusion Eng. Des. 41(1) (1998), pp. 7–14. doi:10.1016/S0920-3796(97)00139-7.
  • R.J. Kurtz, K. Abe, V.M. Chernov, D.T. Hoelzer, H. Matsui, T. Muroga, and G.R. Odette, Recent progress on development of vanadium alloys for fusion. J. Nucl. Mater. 329 (2004), pp. 47–55. doi:10.1016/j.jnucmat.2004.04.299.
  • D.S. Gelles and J.F. Stubbins, Microstructural development in irradiated vanadium alloys. J. Nucl. Mater. 212 (1994), pp. 778–783. doi:10.1016/0022-3115(94)90162-7.
  • T. Nishizawa, H. Sasaki, S. Ohnuki, H. Takahashi, T. Shibayama, and H. Kayano, Radiation damage process of vanadium and its alloys during electron irradiation. J. Nucl. Mater. 239 (1996), pp. 132–138. doi:10.1016/S0022-3115(96)00418-7.
  • T. Shibayama, I. Yamagata, H. Kurishita, and H. Kayano, Development of oxide dispersion strengthened vanadium alloy and its properties. J. Nucl. Mater. 239 (1996), pp. 162–169. doi:10.1016/S0022-3115(96)00469-2.
  • Hidehiro Yasuda and Hirotaro Mori, Effect of fast neutron irradiation on the microstructure in particle dispersed ultra-fine grained VY alloys. Mater. Trans. 45(1) (2004), pp. 29–33. doi:10.2320/matertrans.45.29.
  • S. Kobayashi, Y. Tsuruoka, K. Nakai, and H. Kurishita, Effect of neutron irradiation on the microstructure and hardness in particle dispersed ultra-fine grained V–Y alloys. J. Nucl. Mater. 329 (2004), pp. 447–451. doi:10.1016/j.jnucmat.2004.04.091.
  • A. Czyrska-Filemonowicz and B. Dubiel, Mechanically alloyed, ferritic oxide dispersion strengthened alloys: structure and properties. J. Mater Proc. Technol. 64(1) (1997), pp. 53–64doi:10.1016/S0924-0136(96)02553-8.
  • R.L. Klueh, J.P. Shingledecker, R.W. Swindeman, and D.T. Hoelzer, Oxide dispersion-strengthened steels: A comparison of some commercial and experimental alloys. J. Nucl. Mater. 341(2) (2005), pp. 103–114. doi:10.1016/j.jnucmat.2005.01.017.
  • V.K. Krishnan and K. Sinnaeruvadi, Rapid synthesis of V–4Cr–4Ti alloy/composite by field assisted sintering technique. Int. J. Ref. Metals Hard Mater. 57 (2016), pp. 1–11. doi:10.1016/j.ijrmhm.2016.01.005.
  • N.J. Heo, T. Nagasaka, T. Muroga, and H. Matsui, Effect of impurity levels on precipitation behavior in the low-activation V–4Cr–4Ti alloys. J. Nucl. Mater.. 307 (2002), pp. 620–624. doi:10.1016/S0022-3115(02)01040-1.
  • R.A. Lindau, A. Moslang, M. Schirra, P. Schlossmacher, and M. Klimenkov, Mechanical and microstructural properties of a hipped RAFM ODS-steel. J. Nucl. Mater. 307 (2002), pp. 769–772. doi:10.1016/S0022-3115(02)01045-0.
  • O. Guillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Räthel, and M. Herrmann, Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments. Adv. Eng. Mater. 16(7) (2014), pp. 830–849. doi:10.1002/adem.201300409.
  • R.J. Groza and A. Zavaliangos, Sintering activation by external electrical field. Mater. Sci. Eng. A 287(2) (2000), pp. 171–177. doi:10.1016/S0921-5093(00)00771-1.
  • O. Roberto, R. Licheri, A.M. Locci, A. Cincotti, and G. Cao, Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater. Sci. Eng. R 63(4) (2009), pp. 127–287. doi:10.1016/j.mser.2008.09.003.
  • L. Jochen, M.J. Hoffmann, and O. Guillon, Electric field-assisted sintering in comparison with the hot pressing of yttria-stabilized zirconia. J. Am. Ceram. Soc. 94(1) (2011), pp. 24–31. doi:10.1111/j.1551-2916.2010.04016.x.
  • W.H. Hall, X-ray line broadening in metals. Proc. Phys. Soc. 62(11) (1949), pp. 741. doi:10.1088/0370-1298/62/11/110.
  • J.B. Nelson and D.P. Riley, An experimental investigation of extrapolation methods in the derivation of accurate unit-cell dimensions of crystals. Proc. Phys. Soc. 57(3) (1945), pp. 160. doi:10.1088/0959-5309/57/3/302.
  • X. Li, H. Zhang, S. Lu, W. Li, J. Zhao, B. Johansson, and L. Vitos, Elastic properties of vanadium-based alloys from first-principles theory. Phys. Rev. B 86(1) (2012), pp. 014105. doi:10.1103/PhysRevB.86.014105.
  • L. David, On a screening theory of atomic spectra. Ann. Phys. 8(2) (1959), pp. 271–296. doi:10.1016/0003-4916(59)90023-5.
  • M.W. Finnis, The theory of metal-ceramic interfaces. J. Phys. Condens. Mater. 8(32) (1996), pp. 5811. doi:10.1088/0953-8984/8/32/003.
  • E. Pagounis, M. Talvitie, and V.K. Lindroos, Influence of the metal/ceramic interface on the microstructure and mechanical properties of HIPed iron-based composites. Comp. Sci. Technol. 56(11) (1996), pp. 1329–1337. doi:10.1016/S0266-3538(96)00101-7.
  • K. KeeHyun, Detection and analysis of fine particles acting as the nucleation site of aluminum grains using FIB-TEM. Metall Microstruct Anal 4(3) (2015), pp. 229–239. doi:10.1007/s13632-015-0198-0.
  • T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak, and W.W. Scott, Binary Alloy Phase Diagrams. American Society for Metals, Metals Park, OH, 1986. ISBN: 0-87170-381-5
  • Y.-f. Li, Z.-h. Wang, Y.-h. Zhou, C. Luo, and X.-c. Lai, Thermal activation parameters of V–5Cr–5Ti alloy under hot compression. Trans. Non Metals Soc. Chin. 25 (2015), pp. 2564–2570. doi:10.1016/S1003-6326(15)63876-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.