348
Views
8
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Physical properties of the body-centred tetragonal

, , &
Pages 1866-1883 | Received 21 Oct 2016, Accepted 09 Apr 2017, Published online: 28 Apr 2017

References

  • P.A. Alekseev, J.-M. Mignot, K.S. Nemkovski, V.N. Lazukov, E.V. Nefeodova, A.P. Menushenkov, A.V. Kuznetsov, R.I. Bewley, and A.V. Gribanov, Spin dynamics of the intermediate-valence compound EuCu2Si2, J. Exp. Theor. Phys. 105 (2007), pp. 14–17.
  • S. Danzenbächer, D.V. Vyalikh, Yu Kucherenko, A. Kade, C. Laubschat, N. Caroca-Canales, C. Krellner, C. Geibel, A.V. Fedorov, D.S. Dessau, R. Follath, W. Eberhardt, and S.L. Molodtsov, Hybridization phenomena in nearly-half-filled f-shell electron systems: photoemission study of EuNi2P2, Phys. Rev. Lett. 102 (2009), pp. 026403-1–026403-4.
  • P. Wang, Z.M. Stadnik, J. Zukrowski, B.K. Cho, and J.Y. Kim, Spin-glass ordering and absence of valence fluctuations of Eu in EuCu2Si2 single crystals, Phys. Rev. B 82 (2010), pp. 134404-1–134404-7.
  • Y. Kakehashi and S. Chandra, Two-state Weiss model for the anomalous thermal expansion in EuNi2P2, Physica B. 447 (2014), pp. 19–22.
  • S.A. Medvedev, P. Naumov, O. Barkalov, C. Shekhar, T. Palasyuk, V. Ksenofontov, G. Wortmann, and C. Felser, Structure and electrical resistivity of mixed-valent EuNi2P2 at high pressure, J. Phys.: Condens. Matter 26 (2014), pp. 1–5.
  • G. Seyfarth, A.S. Rüetschi, K. Sengupta, A. Georges, D. Jaccard, S. Watanabe, and K. Miyake, Heavy fermion superconductor CeCu2Si2 under high pressure: Multiprobing the valence crossover, Phys. Rev. B 85 (2012), pp. 205105-1–205105-13.
  • Y. Hiranaka, Ai. Nakamura, M. Hedo, T. Takeuchi, A. Mori, Y. Hirose, K. Mitamura, K. Sugiyama, M. Hagiwara, T. Nakama, and Y. Önuki, Heavy fermion state based on the kondo effect in EuNi2P2, J. Phys. Soc. Jpn. 82 (2013), pp. 083708-1–083708-4.
  • Y. Tsutsumi, K. Machida, and M. Ichioka, Hidden crossover phenomena in strongly Pauli-limited multiband superconductors: Application to CeCu2Si2, Phys. Rev. B 92 (2015), pp. 020502-1(R)–020502-5(R).
  • H. Ikeda, M.-T. Suzuki, and R. Arita, Emergent loop-nodal s - wave superconductivity in CeCu2Si2: Similarities to the iron-based superconductors, Phys. Rev. Lett. 114 (2015), pp. 147003-1–147003-5.
  • M. Enayat, Z. Sun, A. Maldonado, H. Suderow, S. Seiro, C. Geibel, S. Wirth, F. Steglich, and P. Wahl, Superconducting gap and vortex lattice of the heavy-fermion compound CeCu2Si2, Phys. Rev. B 93 (2016), pp. 045123-1–045123-5.
  • J. An, A.S. Sefat, D.J. Singh, and M.-H. Du, Electronic structure and magnetism in BaMn2As2 and BaMn2Sb2, Phys. Rev. B 79 (2009), pp. 075120-1–075120-6.
  • D.H. Ryan, J.M. Cadogan, S. Xu, Z. Xu, and G. Cao, Magnetic structure of EuPe2P2 studied by neutron powder diffraction, Phys. Rev. B 83 (2011), pp. 132403-1–132403-4.
  • H.S. Jeevan, D. Kasinathan, H. Rosner, and P. Gegenwart, Interplay of antiferromagnetism, ferromagnetism, and superconductivity in EuFe2P2 single crystals, Phys. Rev. B 83 (2011), pp. 054511-1–054511-6.
  • S. Nandi, W.T. Jin, Y. Xiao, Y. Su, S. Price, D.K. Shukla, J. Strempfer, H.S. Jeevan, P. Gegenwart, and Th Brckel, Coexistence of superconductivity and ferromagnetism in P-doped EuFe2As2, Phys. Rev. B 89 (2014), pp. 014512-1–014512-7.
  • R.E. Baumbach, V.A. Sidorov, X. Lu, N.J. Ghimire, F. Ronning, B.L. Scott, D.J. Williams, E.D. Bauer, and J.D. Thompson, Suppression of antiferromagnetism by pressure in CaCo2P2, Phys. Rev. B 89 (2014), pp. 094408-1–094408-8.
  • M. Imai, C. Michioka, H. Ueda, and K. Yoshimura, Static and dynamical magnetic properties of the itinerant ferromagnet LaCo2P2, Phys. Rev. B 91 (2015), pp. 184414-1–184414-7.
  • M. Rotter, M. Tegel, and D. Johrendt, Superconductivity at 38 K in the iron arsenide (Ba1-xKx)Fe2As2, Phys. Rev. Lett. 101 (2008), pp. 107006-1–107006-4.
  • K. Sasmal, Lv. Bing, B. Lorenz, A.M. Guloy, F. Chen, Yu.-Yi. Xue, and C.-W. Chu, Superconducting Fe-based compounds (A1-xSrx)Fe2As2 with A = K and Cs with Transition Temperatures up to 37 K, Phys. Rev. Lett 101 (2008), pp. 107007-1–107007-4.
  • T. Mine, H. Yanagi, T. Kamiya, Y. Kamihara, M. Hirano, and H. Hosono, Nickel-based phosphide superconductor with infinite-layer structure, BaNi2P2, Solid State Commun. 147 (2008), pp. 111–113.
  • Y. Tomioka, S. Ishida, M. Nakajima, T. Ito, H. Kito, A. Iyo, H. Eisaki, and S. Uchida, Three-dimensional nature of normal and superconducting states in BaNi2P2 single crystals with the ThCr2Si2-type structure, Phys. Rev. B 79 (2009), pp. 132506-1–132506-4.
  • E.D. Bauer, F. Ronning, B.L. Scott, and J.D. Thompson, Superconductivity in SrNi2As2 single crystals, Phys. Rev. B 78 (2008), pp. 172504-1–172504-3.
  • F. Ronning, E. Bauer, T. Park, S.-H. Baek, H. Sakai, and J. Thompson, Superconductivity and the effects of pressure and structure in single-crystalline SrNi2P2, Phys. Rev. B 79 (2009), pp. 134507-1–134507-7.
  • N. Kurita, F. Ronning, C.F. Miclea, E.D. Bauer, K. Gofryk, J.D. Thompson, and R. Movshovich, Fully gapped superconductivity in SrNi2P2, Phys. Rev. B 83 (2011), pp. 094527-1–094527-7.
  • N. Berry, C. Capan, G. Seyfarth, A.D. Bianchi, J. Ziller, and Z. Fisk, Superconductivity without Fe or Ni in the phosphides BaIr2P2 and BaRh2P2, Phys. Rev. B 79 (2009), pp. 180502-1–180502-4.
  • V.K. Anand, H. Kim, M.A. Tanatar, R. Prozorov, and D.C. Johnston, Superconducting and normal-state properties of APd2P2 (A=Ca, Sr, Ba) single crystals, Phys. Rev. B 87 (2013), pp. 224510-1–224510-22.
  • I.R. Shein and A.L. Ivanovskii, Electronic and structural properties of low-temperature superconductors and ternary pnictides ANi2Pn2 (A=Sr, Ba and Pn=P, As), Phys. Rev. B 79 (2009), pp. 054510-1–054510-7.
  • A. Subedi and D.J. Singh, Density functional study of BaNi2As2: Electronic structure, phonons, and electron-phonon superconductivity, Phys. Rev. B 78 (2008), pp. 132511-1–132511-4.
  • I.B. Shameem, M. Banu, M. Rajagopalan, and P. Yousuf, Shenbagaraman, Electronic and bonding properties of ANi2P2 (A=Ca, Sr, Ba), J. Alloys Compd. 288 (1999), pp. 88–95.
  • T. Terashima, M. Kimata, H. Satsukawa, A. Harada, K. Hazama, M. Imai, S. Uji, H. Kito, A. Iyo, H. Eisaki, and H. Harima, Fermi surface in BaNi2P2, J. Phys. Soc. Jpn. 78 (2009), pp. 033706-1–033706-4.
  • I.R. Shein and A.L. Ivanovskii, Electronic and structural properties of low-temperature superconductors and ternary pnictides ANi2Pn2 (A=Sr, Ba and Pn=P, As), Phys. Rev. B 79 (2009), pp. 054510-1–054510-7.
  • D.S. Jayalakshmi and M. Sundareswari, A comparative density functional study of newly proposed 122 compounds with their parent low-temperature superconductors, Indian J. Phys. 89 (2015), pp. 201–208.
  • E. Karaca, H.M. Tütüncü, H.Y. Uzunok, G.P. Srivastava, and Ş. U\c{C}{\S}ur, Theoretical investigation of superconductivity in SrPd2Ge2, SrPd2As2, and CaPd2Ge2, Phys. Rev. B 93 (2016), pp. 054506-1–054506-11.
  • V.K. Anand, H. Kim, M.A. Tanatar, R. Prozorov, and D.C. Johnston, Superconductivity and physical properties of CePd2Ge2 single crystals, J. Phys.: Condes. Matter 26 (2014), pp. 405702-1–405702-11.
  • R. Bauer, A. Schmid, P. Pavone, and D. Strauch, Electron-phonon coupling in the metallic elements Al, Au, Na, and Nb: A first-principles study, Phys. Rev. B 57 (1998), pp. 11276-1–11276-7.
  • P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch, QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter 21 (2009), pp. 395502-1–395502-19.
  • J.P. Perdew, K. Burke, and M. Erzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996), pp. 3865–3868.
  • R. Stumpf, X. Gonze, and M. Scheffler, A List of Separable, Norm-conserving, Ab Initio Pseudopotentials Fritz-Haber-Institut, Berlin, 1990.
  • W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140 (1965), pp. A1133–A1138.
  • H.J. Monkhorst and J.D. Pack, Special points for brillonin-zone integrations, Phys. Rev. B 13 (1976), pp. 5188–5192.
  • A.B. Migdal, Interaction between electrons and lattice vibrations in a normal metal Zh, Eksp. Teor. Fiz. 34 (1958), pp. 996–1001.
  • G.M. Eliashberg, Interactions between electrons and lattice vibrations in a Superconductor, Sov. Phys. JETP. 11 (1960), pp. 696–702.
  • P.B. Allen, Neutron spectroscopy of superconductors, Phys. Rev. B 6 (1972), pp. 2577–2579.
  • P.B. Allen and R.C. Dynes, Transition temperature of strong-coupled superconductors reanalyzed, Phys. Rev. B 12 (1975), pp. 905–922.
  • F.D. Murnaghan, The compressibility of media under extreme pressures, Proc. Nat. Acad. Sci. USA 30 (1944), pp. 244–247.
  • M.J. Mehl, J.E. Osburn, D.A. Papaconstantopoulos, and B.M. Klein, Structural properties of ordered high-melting-temperature intermetallic alloys from first-principles total-energy calculations, Phys. Rev. B 41 (1990), pp. 10311–10323.
  • M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Clarendon, Oxford, 1956.
  • W. Voigt, Lehrbuch der Kristallphysik, Taubner, Leipzig, 1928.
  • A. Reuss, Berechnung der Flieügrenze von Mischkristallen auf Grund der Plastizittsbedingung für Einkristalle, Z. Angew. Math. Mech. 9 (1929), pp. 49–58.
  • R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. London A 65 (1952), pp. 349–354.
  • O.L. Anderson, A simplified method for calculating the Debye temperature from elastic constants, J. Phys. Chem. Solids 24 (1963), pp. 909–917.
  • H.M. Tütüncü, H.Y. Uzunok, G. P. Ertu\v{g}rul Karaca, S. Srivastava, Özer, and Ş. U\u{g}ur, Ab initio investigation of BCS-type superconductivity in LuNi2B2C-type superconductors, Phys. Rev. B 92 (2016), pp. 054510-1–054510-17.
  • E. Karaca, H.M. Tütüncü, G.P. Srivastava, and Ş. U\u{g}ur, Electron-phonon superconductivity in the ternary phosphides BaM2P2 (M=Ni, Rh, and Ir), Phys. Rev. B 94 (2016), pp. 054507-1–054507-11.
  • H.Y. Uzunok, E. \.{I}psara, H.M. Tütüncü, G.P. Srivastava, and A. Başo\v{g}lu, The effect of spin orbit interaction for superconductivity in the noncentrosymmetric superconductor CaIrSi3, J. Alloys Compd. 681 (2016), pp. 205–211.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.