397
Views
47
CrossRef citations to date
0
Altmetric
Part A: Materials Science

The under-pressure behaviour of mechanical, electronic and optical properties of calcium titanate and its ground state thermoelectric response

, , , , &
Pages 1884-1901 | Received 18 Sep 2016, Accepted 09 Apr 2017, Published online: 28 Apr 2017

References

  • M.A. Peña and J.L.G. Fierro, Chemical structures and performance of perovskite oxides, Chem. Rev. 101 (2001), pp. 1981–2018.10.1021/cr980129f
  • T. Lee and I.A. Aksay, Hierarchical structure−ferroelectricity relationships of barium titanate particles, Cryst. Growth Des. 1 (2001), pp. 401–419.10.1021/cg010012b
  • M. McQuarrie, Structural behavior in the system (Ba, Ca, Sr)TiO3 and its relation to certain dielectric characteristics, J. Am. Ceram. Soc. 38 (1955), pp. 444–449.10.1111/jace.1955.38.issue-12
  • N. Ohtsu, K. Sato, A. Yanagawa, K. Saito, Y. Imai, T. Kohgo, A. Yokoyama, K. Asami, and T. Hanawa, CaTiO3 coating on titanium for biomaterial application – Optimum thickness and tissue response, J. Biomed. Mater. Res. A 82A (2007), pp. 304–315.10.1002/(ISSN)1552-4965
  • V.V. Lemanov, A.V. Sotnikov, E.P. Smirnova, M. Weihnacht, and R. Kunze, Perovskite CaTiO3 as an incipient ferroelectric, Solid State Commun. 110 (1999), pp. 611–614.10.1016/S0038-1098(99)00153-2
  • N. Setter and R. Waser, Electroceramic materials, Acta Mater. 48 (2000), pp. 151–178.10.1016/S1359-6454(99)00293-1
  • M. Guennou, P. Bouvier, B. Krikler, J. Kreisel, R. Haumont, and G. Garbarino, High-pressure investigation of CaTiO3 up to 60 GPa using x-ray diffraction and Raman spectroscopy, Phys. Rev. B 82 (2010), p. 134101.10.1103/PhysRevB.82.134101
  • J.A. Souza and J.P. Rino, A molecular dynamics study of structural and dynamical correlations of CaTiO3, Acta Mater. 59 (2011), pp. 1409–1423.10.1016/j.actamat.2010.11.003
  • Y. Ni, Z. Zhang, D. Wang, Y. Wang, and X. Ren, The effect of point defects on ferroelastic phase transition of lanthanum-doped calcium titanate ceramics, J. Alloys Compd. 577 (2013), pp. S468–S471.10.1016/j.jallcom.2012.02.021
  • A.S. Bhalla, R. Guo, and R. Roy, The perovskite structure – A review of its role in ceramic science and technology, Mater. Res. Innovat. 4 (2000), pp. 3–26.10.1007/s100190000062
  • G. Gralik, A.E. Thomsen, C.A. Moraes, F. Raupp-Pereira, and D. Hotza, Processing and characterization of CaTiO3 perovskite ceramics, Process. Appl. Ceram. 8 (2014), pp. 53–57.10.2298/PAC1402053G
  • N. Ohtsu, K. Saito, K. Asami, and T. Hanawa, Characterization of CaTiO3 thin film prepared by ion-beam assisted deposition, Surf. Coat. Technol. 200 (2006), pp. 5455–5461.10.1016/j.surfcoat.2005.07.003
  • M.R. Mohammadi and D.J. Fray, Synthesis of highly pure nanocrystalline and mesoporous CaTiO3 by a particulate sol–gel route at the low temperature, J. Sol-Gel Sci. Technol. 68 (2013), pp. 324–333.10.1007/s10971-013-3173-8
  • X. Wu, K.M. Rabe, and D. Vanderbilt, Interfacial enhancement of ferroelectricity in CaTiO3/BaTiO3 superlattices, Phys. Rev. B 83 (2011), p. 020104.10.1103/PhysRevB.83.020104
  • X. Yang, J. Fu, C. Jin, J. Chen, C. Liang, M. Wu, and W. Zhou, Formation mechanism of CaTiO3 hollow crystals with different microstructures, J. Am. Chem. Soc. 132 (2010), pp. 14279–14287.10.1021/ja106461u
  • K. Suzuki and K. Kijima, Phase transformation of BaTiO3 nanoparticles synthesized by RF-plasma CVD, J. Alloys Compd. 419 (2006), pp. 234–242.10.1016/j.jallcom.2005.08.075
  • M.D. Biegalski, L. Qiao, Y. Gu, A. Mehta, Q. He, Y. Takamura, A. Borisevich, and L.Q. Chen, Impact of symmetry on the ferroelectric properties of CaTiO3 thin films, Appl. Phys. Lett. 106 (2015), p. 162904.10.1063/1.4918805
  • Y.X. Wang, W.L. Zhong, C.L. Wang, and P.L. Zhang, First-principles study on the tendency to ferroelectricity of CaTiO3, Solid State Commun. 117 (2001), pp. 461–464.10.1016/S0038-1098(00)00510-X
  • Y.X. Wang, M. Arai, T. Sasaki, and C.L. Wang, First-principles study of the (001) surface of cubic CaTiO3, Phys. Rev. B 73 (2006), p. 035411.10.1103/PhysRevB.73.035411
  • H. Lee, T. Mizoguchi, T. Yamamoto, and Y. Ikuhara, First principles study on intrinsic vacancies in cubic and orthorhombic CaTiO3, Mater. Trans. 50 (2009), pp. 977–983.10.2320/matertrans.MC200813
  • S. Saha, T.P. Sinha, and A. Mookerjee, First principles study of electronic structure and optical properties of CaTiO3, Eur. Phys. J. B 18 (2000), pp. 207–214.10.1007/s100510070050
  • Y.X. Wang, W.L. Zhong, C.L. Wang, and P.L. Zhang, First principles study on the optical properties of cubic CaTiO3, Phys. Lett. A 291 (2001), pp. 338–342.10.1016/S0375-9601(01)00735-6
  • M. Yamamoto, H. Ohta, and K. Koumoto, Thermoelectric phase diagram in a CaTiO3–SrTiO3–BaTiO3 system, Appl. Phys. Lett. 90 (2007), p. 072101.10.1063/1.2475878
  • T. Bak, T. Burg, J. Nowotny, and P.J. Blennerhassett, Electrical conductivity and thermoelectric power of CaTiO3 at n–p transition, Adv. Appl. Ceram. 106 (2007), pp. 101–104.10.1179/174367607X156322
  • T. Bak, J. Nowotny, C.C. Sorrell, M.F. Zhou, and E.R. Vance, Charge transport in CaTiO3: II. Thermoelectric, J. Mater. Sci. Mater. Electron. 15 (2004), pp. 645–650.
  • P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2K, An augmented plane wave + local orbitals program for calculating crystal properties, Karlheinz Schwarz, Techn. Universitat Wien, Vienna, 2001.
  • J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces, Phys. Rev. Lett. 100 (2008), p. 136406.10.1103/PhysRevLett.100.136406
  • A.D. Becke and E.R. Johnson, A simple effective potential for exchange, J. Chem. Phys. 124 (2006), p. 221101.10.1063/1.2213970
  • F. Tran and P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential, Phys. Rev. Lett. 102 (2009), p. 226401.10.1103/PhysRevLett.102.226401
  • S.M. Alay-e-Abbas, S. Nazir, and A. Shaukat, Formation energies and electronic structure of intrinsic vacancy defects and oxygen vacancy clustering in BaZrO 3, Phys. Chem. Chem. Phys. 41 (2016), pp. 521–530.
  • S.M. Alay-e-Abbas, S. Nazir, N.A. Noor, N. Amin, and A. Shaukat, Thermodynamic stability and vacancy defect formation energies in SrHfO3, J. Phys. Chem. C 118 (2014), pp. 19625–19634.10.1021/jp506263g
  • G.K.H. Madsen and D.J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities, Comput. Phys. Commun. 175 (2006), pp. 67–71.10.1016/j.cpc.2006.03.007
  • B. Luo, X. Wang, E. Tian, G. Li, and L. Li, Electronic structure, optical and dielectric properties of BaTiO3 /CaTiO3/SrTiO3 ferroelectric superlattices from first-principles calculations, J. Mater. Chem. C 3 (2015), pp. 8625–8633.10.1039/C5TC01622C
  • J. Long, L. Yang, and X. Wei, Lattice, elastic properties and Debye temperatures of ATiO3 (A=Ba, Ca, Pb, Sr) from first-principles, J. Alloys Compd. 549 (2013), pp. 336–340.10.1016/j.jallcom.2012.08.120
  • A.I. Lebedev, Ab initio calculations of phonon spectra in ATiO3 perovskite crystals (A = Ca, Sr, Ba, Ra, Cd, Zn, Mg, Ge, Sn, Pb), Phys. Solid State 51 (2009), pp. 362–372.10.1134/S1063783409020279
  • M.F. Zhou, T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, and E.R. Vance, Defect chemistry and semiconducting properties of calcium titanate, J. Mater. Sci. Mater. Electron. 13 (2002), pp. 697–704.
  • F. Wooten, Optical Properties of Solids, Academic, New York, 1972.
  • D.R. Penn, Wave-number-dependent dielectric function of semiconductors, Phys. Rev. 128 (1962), pp. 2093–2097.10.1103/PhysRev.128.2093
  • K. Xiong, J. Robertson, and S.J. Clark, Defect states in the high-dielectric-constant gate oxide LaAlO3, Appl. Phys. Lett. 89 (2006), p. 022907.10.1063/1.2221521
  • B.J. Kennedy, C.J. Howard, and B. Chakoumakos, Phase transitions in perovskite at elevated temperatures – A powder neutron diffraction study, J. Phys. Condens. Matter 11 (1999), pp. 1479–1488.10.1088/0953-8984/11/6/012
  • G.J. Fischer, Z. Wang, and S.I. Karato, Elasticity of CaTiO3, SrTiO3 and BaTiO3 perovskites up to 3.0 Gpa: The effect of crystallographic structure, Phys. Chem. Miner. 20 (1993), pp. 97–103.
  • S. Saha, T.P. Sinha, and A. Mookerjee, First principles study of electronic structure and optical properties of CaTiO3, Eur. Phys. J. B 18 (2000), pp. 207–214.10.1007/s100510070050
  • K. Ueda, H. Yanagi, R Noshiro, and H. Hosono, Vacuum ultraviolet reflectance and electron energy loss spectra of CaTiO3, J. Phys. Condens. Matter 10 (1998), p. 3669.10.1088/0953-8984/10/16/018

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.