331
Views
11
CrossRef citations to date
0
Altmetric
Part A: Materials Science

The effects of intrinsic properties and defect structures on the indentation size effect in metals

ORCID Icon, , &
Pages 1902-1920 | Received 10 Aug 2016, Accepted 18 Apr 2017, Published online: 19 May 2017

References

  • G. Farges and D. Degout, Interpretation of the indentation size effect in vickers microhardness measurements-absolute hardness of materials, Thin Solid Films 181 (1989), pp. 365–374.10.1016/0040-6090(89)90505-1
  • M. Shell De Guzman, G. Neubauer, P. Flinn, and W.D. Nix, The role of indentation depth on the measured hardness of materials, MRS Proc. 308 (1993), p. 613. doi: 10.1557/PROC-308-613.10.1557/PROC-308-613
  • Q. Ma and D.R. Clarke, Size dependent hardness of silver single crystals, J. Mater. Res. 10 (1995), pp. 853–863.10.1557/JMR.1995.0853
  • W.D. Nix and H. Gao, Indentation size effects in crystalline materials: A law for strain gradient plasticity, J. Mech. Phys. Solids 46 (1998), pp. 411–425.10.1016/S0022-5096(97)00086-0
  • Y.Y. Lim and M.M. Chaudhri, The effect of the indenter load on the nanohardness of ductile metals: An experimental study on polycrystalline work-hardened and annealed oxygen-free copper, Philos. Mag. A 79 (1999), pp. 2979–3000.10.1080/01418619908212037
  • Y. Liu and A.H.W. Ngan, Depth dependence of hardness in copper single crystals measured by nanoindentation, Scr. Mater. 44 (2001), pp. 237–241.10.1016/S1359-6462(00)00598-4
  • J.G. Swadener, E.P. George, and G.M. Pharr, The correlation of the indentation size effect measured with indenters of various shapes, J. Mech. Phys. Solids 50 (2002), pp. 681–694.10.1016/S0022-5096(01)00103-X
  • D.J. Dunstan and A.J. Bushby, The scaling exponent in the size effect of small scale plastic deformation, Int. J. Plast. 40 (2013), pp. 152–162.10.1016/j.ijplas.2012.08.002
  • A.S. Schneider, D. Kiener, C.M. Yakacki, H.J. Maier, P.A. Gruber, N. Tamura, et al., Influence of bulk pre-straining on the size effect in nickel compression pillars, Mater. Sci. Eng. A 559 (2013), pp. 147–158.10.1016/j.msea.2012.08.055
  • Y. Chen, O. Kraft, and M. Walter, Size effects in thin coarse-grained gold microwires under tensile and torsional loading, Acta Mater. 87 (2015), pp. 78–85.10.1016/j.actamat.2014.12.034
  • S. Gupta, A. Ma, and A. Hartmaier, Investigating the influence of crystal orientation on bending size effect of single crystal beams, Comput. Mater. Sci. 101 (2015), pp. 201–210.10.1016/j.commatsci.2014.12.038
  • H.G.M. Kreuzer and R. Pippan, Discrete dislocation simulation of nanoindentation: The effect of moving conditions and indenter shape, Mater. Sci. Eng. A 387–389 (2004), pp. 254–256.10.1016/j.msea.2004.05.037
  • E. Tarleton, D.S. Balint, J. Gong, and A.J. Wilkinson, A discrete dislocation plasticity study of the micro-cantilever size effect, Acta Mater. 88 (2015), pp. 271–282.10.1016/j.actamat.2015.01.030
  • K. Durst, B. Backes, and M. Göken, Indentation size effect in metallic materials: Correcting for the size of the plastic zone, Scr. Mater. 52 (2005), pp. 1093–1097.10.1016/j.scriptamat.2005.02.009
  • K. Danas and V.S. Deshpande, Plane-strain discrete dislocation plasticity with climb-assisted glide motion of dislocations, Model. Simul. Mater. Sci. Eng. 21 (2013), p. 045008.10.1088/0965-0393/21/4/045008
  • N.A. Stelmashenko, M.G. Walls, L.M. Brown, and Y.V. Milman, STM study of microindentations on oriented metallic single crystals, in Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures, M. Nastasi, D. Parkin, and H. Gleiter, eds., Springer, Dordrecht, 1993, pp. 605–610.10.1007/978-94-011-1765-4
  • N.A. Fleck and J.W. Hutchinson, A phenomenological theory for strain gradient effects in plasticity, J. Mech. Phys. Solids 41 (1993), pp. 1825–1857.10.1016/0022-5096(93)90072-N
  • N.A. Fleck, G.M. Muller, M.F. Ashby, and J.W. Hutchinson, Strain gradient plasticity: Theory and experiment, Acta Metall. Mater. 42 (1994), pp. 475–487.10.1016/0956-7151(94)90502-9
  • Y. Huang, F. Zhang, K. Hwang, W. Nix, G. Pharr, and G. Feng, A model of size effects in nano-indentation, J. Mech. Phys. Solids 54 (2006), pp. 1668–1686.10.1016/j.jmps.2006.02.002
  • K. Durst, M. Göken, and G.M. Pharr, Indentation size effect in spherical and pyramidal indentations, J. Phys. Appl. Phys. 41 (2008), p. 074005.10.1088/0022-3727/41/7/074005
  • A.A. Elmustafa and D.S. Stone, Nanoindentation and the indentation size effect: Kinetics of deformation and strain gradient plasticity, J. Mech. Phys. Solids 51 (2003), pp. 357–381.10.1016/S0022-5096(02)00033-9
  • G.M. Pharr, E.G. Herbert, and Y. Gao, The indentation size effect: A critical examination of experimental observations and mechanistic interpretations, Annu. Rev. Mater. Res. 40 (2010), pp. 271–292.10.1146/annurev-matsci-070909-104456
  • O. Kraft, P.A. Gruber, R. Mönig, and D. Weygand, Plasticity in confined dimensions, Annu. Rev. Mater. Res. 40 (2010), pp. 293–317.10.1146/annurev-matsci-082908-145409
  • K. Durst, O. Franke, A. Böhner, and M. Göken, Indentation size effect in Ni–Fe solid solutions, Acta Mater. 55 (2007), pp. 6825–6833.10.1016/j.actamat.2007.08.044
  • J.-C. Zhao, A combinatorial approach for efficient mapping of phase diagrams and properties, J. Mater. Res. 16 (2001), pp. 1565–1578.10.1557/JMR.2001.0218
  • J.M. Wheeler, P. Brodard, and J. Michler, Elevated temperature, in situ indentation with calibrated contact temperatures, Philos. Mag. 92 (2012), pp. 3128–3141.10.1080/14786435.2012.674647
  • O. Franke, J.C. Trenkle, and C.A. Schuh, Temperature dependence of the indentation size effect, J. Mater. Res. 25 (2010), pp. 1225–1229.10.1557/JMR.2010.0159
  • S.-W. Lee, L. Meza, and J.R. Greer, Cryogenic nanoindentation size effect in [0 0 1]-oriented face-centered cubic and body-centered cubic single crystals, Appl. Phys. Lett. 103 (2013), p. 101906.10.1063/1.4820585
  • H.G. Kreuzer and R. Pippan, Discrete dislocation simulation of nanoindentation: The influence of microstructure, in Proceedings of the 7th International Conference on Computational Plasticity, Barcelona, 2003.
  • H.G.M. Kreuzer and R. Pippan, Discrete dislocation simulation of nanoindentation: The effect of statistically distributed dislocations, Mater. Sci. Eng. A 400–401 (2005), pp. 460–462.10.1016/j.msea.2005.01.065
  • M. Rester, C. Motz, and R. Pippan, Where are the geometrically necessary dislocations accommodating small imprints?, J. Mater. Res. 24 (2009), pp. 647–651.10.1557/jmr.2009.0131
  • M. Rester, C. Motz, and R. Pippan, Microstructural investigation of the volume beneath nanoindentations in copper, Acta Mater. 55 (2007), pp. 6427–6435.10.1016/j.actamat.2007.08.001
  • A. Elmustafa and D. Stone, Stacking fault energy and dynamic recovery: Do they impact the indentation size effect?, Mater. Sci. Eng. A 358 (2003), pp. 1–8.10.1016/S0921-5093(03)00293-4
  • M. Rester, C. Motz, and R. Pippan, Stacking fault energy and indentation size effect: Do they interact?, Scr. Mater. 58 (2008), pp. 187–190.10.1016/j.scriptamat.2007.09.055
  • J.S. Field and M.V. Swain, A simple predictive model for spherical indentation, J. Mater. Res. 8 (1993), pp. 297–306.10.1557/JMR.1993.0297
  • R. Schwaiger, B. Moser, M. Dao, N. Chollacoop, and S. Suresh, Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel, Acta Mater. 51 (2003), pp. 5159–5172.10.1016/S1359-6454(03)00365-3
  • B.N. Lucas, W.C. Oliver, G.M. Pharr, and J.-L. Loubet, Time dependent deformation during indentation testing, MRS Proc. 436 (1996). p. 233.
  • J.P. Hirth and J. Lothe, Theory of Dislocations, McGraw-Hill, New York, 1968.
  • X.-M. Wei, J.-M. Zhang, and K.-W. Xu, Generalized stacking fault energy in FCC metals with MEAM, Appl. Surf. Sci. 254 (2007), pp. 1489–1492.10.1016/j.apsusc.2007.07.078
  • N.M. Rosengaard and H.L. Skriver, Calculated stacking-fault energies of elemental metals, Phys. Rev. B 47 (1993), pp. 12865–12873.10.1103/PhysRevB.47.12865
  • K.W. Siu and A.H.W. Ngan, Oscillation-induced softening in copper and molybdenum from nano- to micro-length scales, Mater. Sci. Eng. A 572 (2013), pp. 56–64.10.1016/j.msea.2013.02.037
  • S.A. Syed Asif and J.B. Pethica, Nanoindentation creep of single-crystal tungsten and gallium arsenide, Philos. Mag. A 76 (1997), pp. 1105–1118.10.1080/01418619708214217
  • D.F. Bahr, D.E. Kramer, and W.W. Gerberich, Non-linear deformation mechanisms during nanoindentation, Acta Mater. 46 (1998), pp. 3605–3617.10.1016/S1359-6454(98)00024-X
  • M.R. Maughan and D.F. Bahr, Dislocation activity under nanoscale contacts prior to discontinuous yield, Mater. Res. Lett. 3 (2015), pp. 58–64.10.1080/21663831.2014.961663
  • N.X. Randall and C. Julia-Schmutz, Evolution of contact area and pile-up during the nanoindentation of soft coatings on hard substrates, MRS Proc. 522 (1998), pp. 21–26.10.1557/PROC-522-21
  • C.L. Woodcock and D.F. Bahr, Plastic zone evolution around small scale indentations, Scr. Mater. 43 (2000), pp. 783–788.10.1016/S1359-6462(00)00489-9
  • K. Durst, B. Backes, and M. Göken, Determination of plastic properties of polycrystalline metallic materials by nanoindentation-experiments and finite element simulations, MRS Proc. 841 (2004), pp. R11–4.
  • M. Rester, C. Motz, and R. Pippan, Indentation across size scales – A survey of indentation-induced plastic zones in copper {111} single crystals, Scr. Mater. 59 (2008), pp. 742–745.10.1016/j.scriptamat.2008.06.003
  • K.L. Johnson, Contact mechanics, Cambridge University Press, Cambridge, 1987.
  • S. Harvey, H. Huang, S. Venkataraman, and W.W. Gerberich, Microscopy and microindentation mechanics of single crystal Fe- 3 wt.% Si: Part I. Atomic force microscopy of a small indentation, J. Mater. Res. 8 (1993), pp. 1291–1299.10.1557/JMR.1993.1291
  • D.F. Bahr and W.W. Gerberich, Plastic zone and pileup around large indentations, Metall. Mater. Trans. A 27 (1996), pp. 3793–3800.10.1007/BF02595628
  • D. Tabor, The Hardness of Metals, Oxford University Press, London, 1951.
  • C.L. Woodcock, D.F. Bahr, and N.R. Moody, Plastic zone development around nanoindentations, MRS Proc. 649 (2000), pp. Q7–14.
  • W.C. Oliver and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992), pp. 1564–1583.10.1557/JMR.1992.1564
  • F.J. Humphreys, Recrystallization and Related Annealing Phenomena, 1st ed. Pergamon, Oxford, 1995.
  • M.J. Cawkwell, D. Nguyen-Manh, C. Woodward, D.G. Pettifor, and V. Vitek, Origin of brittle cleavage in iridium, Science 309 (2005), pp. 1056–1059.
  • W.D. Callister, Materials Science and Engineering: An Introduction, 5th ed. John Wiley, New York, 2000.
  • K.W. McElhaney, J.J. Vlassak, and W.D. Nix, Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments, J. Mater. Res. 13 (1998), pp. 1300–1306.10.1557/JMR.1998.0185
  • J.A. El-Awady, Unravelling the physics of size-dependent dislocation-mediated plasticity, Nat. Commun. 6 (2015), p. 5926.10.1038/ncomms6926

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.