541
Views
14
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Texture development during cold rolling of Fe–Cr–Ni alloy-experiments and simulations

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1939-1962 | Received 03 Nov 2016, Accepted 13 Apr 2017, Published online: 05 May 2017

References

  • R. Gunn, Duplex Stainless Steels: Microstructure, Properties and Applications, Woodhead Publ., Elsevier, Cambridge, 1997.10.1533/9781845698775
  • I. Alvarez-Armas and S.D. Moreuil, Duplex Stainless Steels, ISTE Ltd, London, 2009.
  • H. Hänninen, J. Romu, R. Ilola, J. Tervo, and A. Laitinen, Effects of processing and manufacturing of high nitrogen-containing stainless steels on their mechanical, corrosion and wear properties, J. Mater. Proc. Technol. 117 (2001), pp. 424–430.10.1016/S0924-0136(01)00804-4
  • Y. Jang, S. Kim, J. Lee, K. Kim, and J. Lee, Effect of N addition on tensile and corrosion behaviors of CD4MCU cast duplex stainless steels, Metall. Mater. Trans. A. 34 (2003), pp. 1617–1625.
  • R. Badji, T. Chauveau, and B. Bacroix, Texture, misorientation and mechanical anisotropy in a deformed dual phase stainless steel weld joint, Mater. Sci. Eng.: A 575 (2013), pp. 94–103.10.1016/j.msea.2013.03.018
  • J. Kowalska, W. Ratuszek, M. Witkowska, A. Zielińska-Lipiec, and T. Tokarski, Microstructure and texture characteristics of the metastable Fe-21Mn-3Si-3Al alloy after cold deformation, J. Alloys Compd. 643 (2015), pp. S39–S45.10.1016/j.jallcom.2015.04.086
  • A. Kurc-Lisiecka and E. Kalinowska-Ozgowicz, Structure and mechanical properties of austenitic steel after cold rolling, J. Achievements Mater. Manuf. Eng. 44 (2011), pp. 148–153.
  • R.K. Khatirkar and S. Kumar, Comparison of recrystallization textures in interstitial free and interstitial free high strength steels, Mater. Chem. Phys. 127 (2011), pp. 128–136.10.1016/j.matchemphys.2011.01.045
  • I. Samajdar, B. Verlinden, L. Rabet, and P. Van Houtte, Recrystallization texture in a cold rolled commercial purity aluminum: On the plausible macro- and micro-mechanisms, Mater. Sci. Eng.: A 266 (1999), pp. 146–154.10.1016/S0921-5093(99)00022-2
  • T. Senuma, K. Kawasaki, and Y. Takemoto, Recrystallization behavior and texture formation of rapidly annealed cold-rolled extralow carbon steel sheets, Mater. Trans. 47 (2006), pp. 1769–1775.10.2320/matertrans.47.1769
  • A. Kumar, R.K. Khatirkar, D. Chalapathi, G. Kumar, and S. Suwas, Microstructure and texture development during cold rolling in UNS S32205 and UNS S32760 duplex stainless steels, Metall. Mater. Trans. A 48 (2017), pp. 2349–2362.10.1007/s11661-017-4026-9
  • A. Belyakov, Y. Kimura, and K. Tsuzaki, Microstructure evolution in dual-phase stainless steel during severe deformation, Acta Mater. 54 (2006), pp. 2521–2532.10.1016/j.actamat.2006.01.035
  • A. Belyakov, R. Kaibyshev, Y. Kimura, and K. Tsuzaki, Recrystallization mechanisms in severely deformed dual-phase stainless steel, Mater. Sci. Forum 638–642 (2010), pp. 1905–1910.10.4028/www.scientific.net/MSF.638-642
  • N. Jia, R. Lin Peng, G.C. Chai, S. Johansson, and Y.D. Wang, Direct experimental mapping of microscale deformation heterogeneity in duplex stainless steel, Mater. Sci. Eng.: A 491 (2008), pp. 425–433.10.1016/j.msea.2008.02.021
  • M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe, Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD, Mater. Sci. Eng.: A 527 (2010), pp. 2738–2746.10.1016/j.msea.2010.01.004
  • C. Herrera, D. Ponge, and D. Raabe, Recrystallization during annealing of a cold rolled lean duplex stainless steel, Mater. Sci. Forum 715–716 (2012), pp. 550–550.10.4028/www.scientific.net/MSF.715-716
  • C. Herrera, D. Ponge, and D. Raabe, Design of a novel Mn-based 1GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability, Acta Mater. 59 (2011), pp. 4653–4664.10.1016/j.actamat.2011.04.011
  • S. Suwas and R.K. Ray, Crystallographic Texture of Materials, Springer, London, 2014.10.1007/978-1-4471-6314-5
  • B. Verlinden, J. Driver, I. Samajdar, and R. Doherty, Thermo-mechanical Processing of Metallic Materials, Vol. 11, Elsevier, Oxford, 2007.
  • A. Ferreira Filho, C. Herrera, N.B. de Lima, R.L. Plaut, and A.F. Padilha, Texture evolution of ferritic (AISI 430) stainless steel strips during cold rolling, annealing and drawing, Mater. Sci. Forum 539–543 (2007), pp. 4926–4931.10.4028/www.scientific.net/MSF.539-543
  • M. Hölscher, D. Raabe, and K. Lücke, Rolling and recrystallization textures of BCC steels, Textures Microstruct. 14 (1991), pp. 585–596.
  • L.S. Tóth, J.J. Jonas, D. Daniel, and R.K. Ray, Development of ferrite rolling textures in low- and extra low-carbon steels, Metall. Trans. A 21 (1990), pp. 2985–3000.10.1007/BF02647219
  • R. Khatirkar, K.V.M. Krishna, L. Kestens, R. Petrov, P. Pant, and I. Samajdar, Strain localizations in ultra low carbon steel: exploring the role of dislocations, ISIJ Int. 51 (2011), pp. 849–856.10.2355/isijinternational.51.849
  • R. Khatirkar, L. Kestens, R. Petrov, and I. Samajdar, Controlled warm working: possible tool for optimizing stored energy advantage in deformed γ-fiber (ND// 〈1 1 1〉), ISIJ Int. 49 (2009), pp. 78–85.10.2355/isijinternational.49.78
  • D. Raabe, Contribution of {1 2 3} 〈1 1 1〉 slip systems to deformation of B.C.C. metals, Phys. Status Solidi Appl. Res. 149 (1995), pp. 575–581.
  • D. Raabe and K. Lücke, Textures of ferritic stainless steels, Mater. Sci. Technol. 9 (1993), pp. 302–312.10.1179/mst.1993.9.4.302
  • T. Leffers and R.K. Ray, The brass-type texture and its deviation from the copper-type texture, Prog. Mater. Sci. 54 (2009), pp. 351–396.10.1016/j.pmatsci.2008.09.002
  • R. Madhavan, R.K. Ray, and S. Suwas, Micro-mechanical aspects of texture evolution in nickel and nickel-cobalt alloys: Role of stacking fault energy, Philos. Mag. 96 (2016), pp. 1–23.
  • R.E. Smallman and D. Green, The dependence of rolling texture on stacking fault energy, Acta Metall. 12 (1964), pp. 145–154.10.1016/0001-6160(64)90182-8
  • L. Rémy and A. Pineau, Twinning and strain-induced f.c.c. → h.c.p. transformation on the mechanical properties of CoNiCrMo alloys, Mater. Sci. Eng. 26 (1976), pp. 123–132.10.1016/0025-5416(76)90234-2
  • G. Wassermann, Der einfluss mechanischer zwillingbildung auf die entstehung der walztexturen kubisch flächenzentrierter metalle [The effect of mechanical twinning on the formation of rolling textures in face-centered-cubic metals], Z. Met. 54 (1963), pp. 61–65.
  • K. Wierzbanowski, M. Wroński, and T. Leffers, FCC rolling textures reviewed in the light of quantitative comparisons between simulated and experimental textures FCC rolling textures reviewed in the light of quantitative comparisons between simulation, Crit. Rev. Solid State Mater. Sci. 39 (2014), pp. 391–422.10.1080/10408436.2014.899485
  • J.G. Sevillano, The contribution of macroscopic shear bands to the rolling texture of fcc metals 11 (1977), pp. 581–585.
  • B.J. Duggan, M. Hatherly, W.B. Hutchinson, and P.T. Wakefield, Deformation structures and textures in cold-rolled 70: 30 brass, Met. Sci. 12 (1978), pp. 343–351.
  • W.B. Hutchinson, B.J. Duggan, and M. Hatherly, Development of deformation texture and microstructure in cold-rolled Cu-30Zn, Met. Technol. 6 (1979), pp. 398–403.
  • S.R. Kalidindi, R.D. Doherty, and C. Necker, Deformation texture transition in brass: Critical role of micro-scale shear bands, Acta Mater. 48 (2000), pp. 2665–2673.
  • S.R. Kalidindi, Modeling anisotropic strain hardening and deformation textures in low stacking fault energy fcc metals, Int. J. Plast. 17 (2001), pp. 837–860.10.1016/S0749-6419(00)00071-1
  • P. Van Houtte, S. Li, M. Seefeldt, and L. Delannay, Deformation texture prediction: From the Taylor model to the advanced Lamel model, Int. J. Plast. 21 (2005), pp. 589–624.10.1016/j.ijplas.2004.04.011
  • N. Jia, R. Lin Peng, Y.D. Wang, S. Johansson, and P.K. Liaw, Micromechanical behavior and texture evolution of duplex stainless steel studied by neutron diffraction and self-consistent modeling, Acta Mater. 56 (2008), pp. 782–793.10.1016/j.actamat.2007.10.040
  • P. Van Houtte, L. Delannay, and S.R. Kalidindi, Comparison of two grain interaction models for polycrystal plasticity and deformation texture prediction, Int. J. Plast. 18 (2002), pp. 359–377.10.1016/S0749-6419(00)00102-9
  • D. Raabe, Texture simulation for hot rolling of aluminium by use of a Taylor model considering grain interactions, Acta Metall. Mater. 43 (1995), pp. 1023–1028.10.1016/0956-7151(94)00302-X
  • B. Liu, D. Raabe, F. Roters, P. Eisenlohr, and R.A. Lebensohn, Comparison of finite element and fast Fourier transform crystal plasticity solvers for texture prediction, Model. Simul. Mater. Sci. Eng. 18 (2010), pp. 085005 (21).
  • N. Jia, F. Roters, P. Eisenlohr, C. Kords, and D. Raabe, Non-crystallographic shear banding in crystal plasticity FEM simulations: Example of texture evolution in α-brass, Acta Mater. 60 (2012), pp. 1099–1115.10.1016/j.actamat.2011.10.047
  • L. Anand and C. Su, A theory for amorphous viscoplastic materials undergoing finite deformations, with application to metallic glasses, J. Mech. Phys. Solids 53 (2005), pp. 1362–1396.10.1016/j.jmps.2004.12.006
  • D. Raabe, Investigation of contribution of {1 2 3} slip planes to development of rolling textures in bee metals by use of Taylor models, Mater. Sci. Technol. 11 (1995), pp. 455–460.10.1179/mst.1995.11.5.455
  • L.S. Tóth, A. Molinari, D. Raabe, Modeling of rolling texture development in a ferritic chromium steel, Metall. Mater. Trans. A. 28 (1997), pp. 2343–2351.
  • P. Eisenlohr, D.D. Tjahjanto, T. Hochrainer, F. Roters, and D. Raabe, Comparison of texture evolution in fcc metals predicted by various grain cluster homogenization schemes, Int. J. Mater. Res. 100 (2009), pp. 500–509.10.3139/146.110071
  • D. Raabe, Simulation of rolling textures of b.c.c. metals considering grain interactions and crystallographic slip on {1 1 0}, {1 1 2} and {1 2 3} planes, Mater. Sci. Eng.: A 197 (1995), pp. 31–37.10.1016/0921-5093(94)09770-4
  • D. Raabe, Z. Zhao, and W. Mao, On the dependence of in-grain subdivision and deformation texture of aluminum on grain interaction, Acta Mater. 50 (2002), pp. 4379–4394.10.1016/S1359-6454(02)00276-8
  • P. Van Houtte, L. Delannay, and I. Samajdar, Quantitative prediction of cold rolling textures in low-carbon steel by means of the lamel model 31 (1999), pp. 109–149.
  • S.R. Kalidindi, C.A. Bronkhorst, and L. Anand, Crystallographic texture evolution in bulk deformation processing of FCC metals, J. Mech. Phys. Solids 40 (1992), pp. 537–569.10.1016/0022-5096(92)80003-9
  • N. Jia, P. Eisenlohr, F. Roters, D. Raabe, and X. Zhao, Orientation dependence of shear banding in face-centered-cubic single crystals, Acta Mater. 60 (2012), pp. 3415–3434.10.1016/j.actamat.2012.03.005
  • P. Van Houtte, Simulation of the rolling and shear texture of brass by the Taylor theory adapted for mechanical twinning, Acta Metall. 26 (1978), pp. 591–604.10.1016/0001-6160(78)90111-6
  • P. Van Houtte, On the equivalence of the relaxed Taylor theory and the Bishop-Hill theory for partially constrained plastic deformation of crystals, Mater. Sci. Eng. 55 (1982), pp. 69–77.10.1016/0025-5416(82)90085-4
  • A. Molinari, G.R. Canova, and S. Ahzi, A self consistent approach of the large deformation 35 (1987), pp. 2983–2994.
  • R.A. Lebensohn and C.N. Tomé, A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys, Acta Metall. Mater. 41 (1993), pp. 2611–2624.10.1016/0956-7151(93)90130-K
  • C. Tome, G.R. Canova, U.F. Kocks, N. Christodoulou, and J.J. Jonas, The relation between macroscopic and microscopic strain hardening in FCC polycrystals, Acta Metall. 32 (1984), pp. 1637–1653.10.1016/0001-6160(84)90222-0
  • C.N. Tomé, R.A. Lebensohn, Manual for Code Version 7b, (2007).
  • W. Vander Voort, Baldwin, Metallography and microstructures handbook, ASM Int. 9 (2004), pp. 1–2733.
  • OIM Analysis version:7.2, User Man. TexSEM Lab. Inc., (2013).
  • P. Van Houtte, The ‘MTM-FHM’ software system Version 2 Manual, (2009).
  • H.-J. Bunge, Texture Analysis in Materials Science, Elsevier, (1982).
  • N.P. Gurao and S. Suwas, Effect of phase contiguity and morphology on the evolution of deformation texture in two-phase alloys, Metall. Mater. Trans. A 48 (2017), pp. 809–827.10.1007/s11661-016-3856-1
  • J. Keichel, J. Foct, and G. Gottstein, Deformation and annealing behavior of nitrogen alloyed duplex stainless steels. Part I: Rolling, ISIJ Int. 43 (2003), pp. 1781–1787.
  • A.J. Schwartz, M. Kumar, A.L. Adams, and D.P. Field, Electron Backscatter Diffraction in Materials Science, 2nd ed., Plenum Publ, New York, NY, 2009.10.1007/978-0-387-88136-2
  • D. Raabe, Inhomogeneity of the crystallographic texture in a hot-rolled austenitic stainless steel, J. Mater. Sci. 30 (1995), pp. 47–52.10.1007/BF00352130
  • I. Tikhovskiy, D. Raabe, and F. Roters, Simulation of earing of a 17% Cr stainless steel considering texture gradients, Mater. Sci. Eng.: A 488 (2008), pp. 482–490.10.1016/j.msea.2007.11.063
  • M.Y. Huh, J.H. Lee, S.H. Park, O. Engler, and D. Raabe, Effect of through-thickness macro and micro-texture gradients on ridging of 17%Cr ferritic stainless steel sheet, Steel Res. Int. 76 (2005), pp. 797–806.10.1002/srin.2005.76.issue-11
  • D. Raabe, Texture and microstructure evolution during cold rolling of a strip cast and of a hot rolled austenitic stainless steel, Acta Mater. 45 (1997), pp. 1137–1151.10.1016/S1359-6454(96)00222-4
  • C. Herrera, D. Ponge, and D. Raabe, Characterization of the microstructure, crystallographic texture and segregation of an as-cast duplex stainless steel slab, Steel Res. Int. 79 (2008), pp. 10–12.
  • S. Suwas, R. Arruffat-Massion, L.S. Tóth, A. Eberhardt, J.-J. Fundenberger, and W. Skrotzki, Evolution of crystallographic texture during equal channel angular extrusion of copper: The role of material variables procedure, Metall. Mater. Trans. A 37 (2006), pp. 739–753.10.1007/s11661-006-0046-6
  • J. Sidor, A. Miroux, R. Petrov, and L. Kestens, Microstructural and crystallographic aspects of conventional and asymmetric rolling processes, Acta Mater. 56 (2008), pp. 2495–2507.10.1016/j.actamat.2008.01.042
  • S. Pramanik, S. Bera, and S.K. Ghosh, Influence of cold rolling on microstructural evolution in 2205 duplex stainless steel, Steel Res. Int. 85 (2014), pp. 776–783.10.1002/srin.v85.5
  • M. Breda, K. Brunelli, F. Grazzi, A. Scherillo, and I. Calliari, Effects of cold rolling and strain-induced martensite formation in a SAF 2205 duplex stainless steel, Metall. Mater. Trans. A. 46 (2014), pp. 577–586.
  • P.C.J. Gallagher, The influence of alloying, temperature, and related effects on the stacking fault energy, Metall. Trans. 1 (1970), pp. 2429–2461.
  • W. Sigle, C. Sarbu, and D. Brunner, Direct measurements of stacking-fault energies from observations of dislocation nodes, Philos. Mag. 6(70) (1961), pp. 1215–1226.
  • F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Oxford, 2004.
  • R. Madhavan, R.K. Ray, and S. Suwas, New insights into the development of microstructure and deformation texture in nickel-60 wt.% cobalt alloy, Acta Mater. 78 (2014), pp. 222–235.10.1016/j.actamat.2014.06.031
  • R. Khatirkar, B. Vadavadagi, S.K. Shekhawat, and A. Haldar, Orientation Dependent Recovery in Interstitial Free Steel, ISIJ Int. 52 (2012), pp. 884–893.10.2355/isijinternational.52.884
  • N. Jia, R.L. Peng, Y.D. Wang, and X. Zhao, Self-consistent modeling of rolling textures in an austenitic–ferritic duplex steel, Mater. Sci.and Eng.: A 528 (2011), pp. 3615–3624.10.1016/j.msea.2011.01.027
  • N. Jia, D. Raabe, and X. Zhao, Texture and microstructure evolution during non-crystallographic shear banding in a plane strain compressed Cu–Ag metal matrix composite, Acta Mater. 76 (2014), pp. 238–251.10.1016/j.actamat.2014.05.036

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.