240
Views
2
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Modelling of grain refinement driven by negative grain boundary energy

, &
Pages 1963-1977 | Received 19 Oct 2016, Accepted 11 Apr 2017, Published online: 10 May 2017

References

  • J. Svoboda, P. Fratzl, and G.A. Zickler, A new treatment of transient grain growth, Acta Mater. 115 (2016), pp. 442–447.10.1016/j.actamat.2016.05.020
  • M. Hillert, On the theory of normal and abnormal grain growth, Acta Metall. 13 (1965), pp. 227–238.10.1016/0001-6160(65)90200-2
  • M. Hillert, Analytical treatments of normal grain growth, Mater. Sci. Forum 204–206 (1996), pp. 3–18.10.4028/www.scientific.net/MSF.204-206
  • F.D. Fischer, J. Svoboda, and H. Petryk, Thermodynamic extremal principles for irreversible processes in materials science, Acta Mater. 67 (2014), pp. 1–20.10.1016/j.actamat.2013.11.050
  • F.D. Fischer, J. Svoboda, and P. Fratzl, A thermodynamic approach to grain growth and coarsening, Phil. Mag. 83 (2003), pp. 1075–1093.10.1080/0141861031000068966
  • K. Hackl and J. Renner, High-temperature deformation and recrystallization: A variational analysis and its application to olivine aggregates, J. Geophys. Res. Solid Earth 118 (2013), pp. 943–967.10.1002/jgrb.50125
  • L. Kertsch and D. Helm, Modelling grain growth in the framework of rational extended thermodynamics, Modelling Simul. Mater. Sci. Eng. 24 (2016), pp. 045001-1–045001-17.
  • A.H. Cottrell and B. Bilby, Dislocation theory of yielding and strain ageing of iron, Proc. Phys. Soc. London, Sect. A 62 (1949), pp. 49–62.10.1088/0370-1298/62/1/308
  • J. Svoboda, G.A. Zickler, E. Kozeschnik, and F.D. Fischer, Kinetics of interstitial segregation in Cottrell atmospheres and grain boundaries, Philos. Mag. Lett. 95 (2015), pp. 458–465.10.1080/09500839.2015.1087652
  • S.G. Kim, J.S. Lee, and B.-J. Lee, Thermodynamic properties of phase-field models for grain boundary segregation, Acta Mater. 112 (2016), pp. 150–161.10.1016/j.actamat.2016.04.028
  • J.E. Burke, Some factors affecting the rate of grain growth in metals, Trans. Metal. Soc. AIME 175 (1949), pp. 75–91.
  • P. Kerger, D. Rathmann, M. Marx, and C. Motz, How to produce a desired bimodal microstructure for optimized mechanical properties: Investigation of the mechanisms of abnormal grain growth in pulsed electro-deposited nickel, Int. J. Mater. Res. 106 (2015), pp. 1131–1143.10.3139/146.111291
  • J. Weissmüller, Alloy effects in nanostructures, Nanostruct. Mater. 3 (1993), pp. 261–272.10.1016/0965-9773(93)90088-S
  • J. Weissmüller, Some basic notions on nanostructured solids, Mater. Sci. Eng. A 179–180 (1994), pp. 102–107.10.1016/0921-5093(94)90173-2
  • J. Weissmüller, Alloy thermodynamics in nanostructures, J. Mater. Res. 9 (1994), pp. 4–7.10.1557/JMR.1994.0004
  • R. Kirchheim, Grain coarsening inhibited by solute segregation, Acta Mater. 50 (2002), pp. 413–419.10.1016/S1359-6454(01)00338-X
  • F. Liu and R. Kirchheim, Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation, J. Cryst. Growth 264 (2004), pp. 385–391.10.1016/j.jcrysgro.2003.12.021
  • F. Liu and R. Kirchheim, Grain boundary saturation and grain growth, Scripta Mater. 51 (2004), pp. 521–525.10.1016/j.scriptamat.2004.05.042
  • R. Kirchheim, Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background, Acta Mater. 55 (2007), pp. 5129–5138.10.1016/j.actamat.2007.05.047
  • R. Kirchheim, Reducing grain boundary, dislocation line and vacancy formation energies by solute segregationII. Experimental evidence and consequences, Acta Mater. 55 (2007), pp. 5139–5148.10.1016/j.actamat.2007.05.033
  • L.S. Shvindlerman and G. Gottstein, Unexplored topics and potentials of grain boundary engineering, Scripta Mater. 54 (2006), pp. 1041–1045.10.1016/j.scriptamat.2005.11.047
  • G. Gottstein, and L.S. Shvindlerman, Reply to comments on ‘Unexplored topics and potentials of grain boundary engineering’, [Scripta Materialia, 54 (2006) 1041–1045], Scripta Mater. 55(10) (2006), pp. 965–966.10.1016/j.scriptamat.2006.07.039
  • R. Kirchheim, Comment on ‘Unexplored topics and potentials of grain boundary engineering’ by L.S. Shvindlerman and G. Gottstein, Scripta Mater. 55 (2006), pp. 963–964.10.1016/j.scriptamat.2006.07.037
  • Z. Chen, F. Liu, G. Yang, and Y. Zhou, Influence of grain boundary energy on the grain size evolution in nanocrystalline materials, J. Phys.: Conf. Ser. 152 (2009), pp. 012086-1–012086-7.
  • J.R. Trelewicz and C.A. Schuh, Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys, Phys. Rev. B 79 (2009), pp. 094112-1–094112-13.
  • H.A. Murdoch and C.A. Schuh, Stability of binary nanocrystalline alloys against grain growth and phase separation, Acta Mater. 61 (2013), pp. 2121–2132.10.1016/j.actamat.2012.12.033
  • H.A. Murdoch and C.A. Schuh, Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design, J. Mater. Res. 28 (2013), pp. 2154–2163.10.1557/jmr.2013.211
  • A.R. Kalidindi, T. Chookajorn, and C.A. Schuh, Nanocrystalline materials at equilibrium: A thermodynamic review, JOM 67 (2015), pp. 2834–2843.10.1007/s11837-015-1636-9
  • D. Raabe, M. Herbig, S. Sandlöbes, Y. Li, D. Tytko, M. Kuzmina, D. Ponge, and P.-P. Choi, Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces, Curr. Opin. Solid State Mater. Sci. 18 (2014), pp. 253–261.10.1016/j.cossms.2014.06.002
  • M. Herbig, D. Raabe, Y.J. Li, P. Choi, S. Zaefferer, and S. Goto, Atomic-scale quantification of grain boundary segregation in nanocrystalline material, Phys. Rev. Lett. 112 (2014), pp. 126103-1–126103-5.
  • P.C. Millett, R.P. Selvam, and A. Saxena, Stabilizing nanocrystalline materials with dopants, Acta Mater. 55 (2007), pp. 2329–2336.10.1016/j.actamat.2006.11.028
  • A.M. Tahir, R. Janisch, and A. Hartmaier, Ab initio calculation of traction separation laws for a grain boundary in molybdenum with segregated C impurities, Modell. Simul. Mater. Sci. Eng. 21 (2013), pp. 075005-1–075005-16.
  • Y. Purohit, S. Jang, D.L. Irving, C.W. Padgett, R.O. Scattergood, and D.W. Brenner, Atomistic modeling of the segregation of lead impurities to a grain boundary in an aluminum bicrystalline solid, Mater. Sci. Eng. A 493 (2008), pp. 97–100.10.1016/j.msea.2007.05.128
  • Y. Purohit, L. Sun, D.L. Irving, R.O. Scattergood, and D.W. Brenner, Computational study of the impurity induced reduction of grain boundary energies in nano- and bi-crystalline Al–Pb alloys, Mater. Sci. Eng. A 527 (2010), pp. 1769–1775.10.1016/j.msea.2009.11.034
  • Y. Purohit, L. Sun, O. Shenderova, R.O. Scattergood, and D.W. Brenner, First-principles-based mesoscale modeling of the solute-induced stabilization of 〈100〉 tilt grain boundaries in an Al–Pb alloy, Acta Mater. 59 (2011), pp. 7022–7028.10.1016/j.actamat.2011.07.056
  • K.A. Darling, M.A. Tschopp, B.K. VanLeeuwen, M.A. Atwater, and Z.K. Liu, Mitigating grain growth in binary nanocrystalline alloys through solute selection based on thermodynamic stability maps, Comput. Mater. Sci. 84 (2014), pp. 255–266.10.1016/j.commatsci.2013.10.018
  • M. Saber, C.C. Koch, and R.O. Scattergood, Thermodynamic grain size stabilization models: An overview, Mater. Res. Lett. 3 (2015), pp. 65–75.10.1080/21663831.2014.997894
  • Y. Lin, H. Wen, Y. Li, B. Wen, W. Liu, and E.J. Lavernia, An analytical model for stress-induced grain growth in the presence of both second-phase particles and solute segregation at grain boundaries, Acta Mater. 82 (2015), pp. 304–315.10.1016/j.actamat.2014.08.059
  • H. Yu, C. Lu, A.K. Tieu, H. Li, A. Godbole, C. Kong, and X. Zhao, Simultaneous grain growth and grain refinement in bulk ultrafine-grained copper under tensile deformation at room temperature, Metall. Mater. Trans. A 47 (2016), pp. 3785–3789.10.1007/s11661-016-3573-9
  • J. Li, J.Y. Zhang, G. Liu, and J. Sun, New insight into the stable grain size of nanotwinned Ni in steady-state creep: Effect of the ratio of effective-to-internal stress, Int. J. Plast 85 (2016), pp. 172–189.10.1016/j.ijplas.2016.07.009
  • S. Fabris and C. Elsässer, First-principles analysis of cation segregation at grain boundaries in α-Al2O3, Acta Mater. 51 (2003), pp. 71–86.10.1016/S1359-6454(02)00270-7
  • L. Priester, Grain Boundaries: From Theory to Engineering, Springer Verlag, Berlin, Heidelberg, 2013.10.1007/978-94-007-4969-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.