722
Views
28
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Influence of ageing on the low cycle fatigue behaviour of an Al–Mg–Si alloy

, , , &
Pages 1978-2003 | Received 15 Sep 2016, Accepted 01 Apr 2017, Published online: 05 May 2017

References

  • C.E.S. Edupack, Granta Design Limited, England, Cambridge, 2005.
  • E. Orowan, Theory of the fatigue of metals, Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 171 (1939), pp. 79–106.10.1098/rspa.1939.0055
  • C.R. Hutchinson, F. de Geuser, Y. Chen, and A. Deschamps, Quantitative measurements of dynamic precipitation during fatigue of an Al–Zn–Mg–(Cu) alloy using small-angle X-ray scattering, Acta Mater. 74 (2014), pp. 96–109.10.1016/j.actamat.2014.04.027
  • N. Singh and V. Singh, Low cycle fatigue behaviour of Ti alloy Timetal 834 at 873K, International Journal of Fatigue 29 (2007), pp. 843–851.10.1016/j.ijfatigue.2006.09.006
  • P. Zhang, Q. Zhu, C. Hu, C.J. Wang, G. Chen, and H.Y. Qin, Cyclic deformation behavior of a nickel-base superalloy under fatigue loading, Mater. Des. 69 (2015), pp. 12–21.
  • W.Z. Han, Y. Chen, A. Vinogradov, and C.R. Hutchinson, Dynamic precipitation during cyclic deformation of an underaged Al–Cu alloy, Mater. Sci. Eng. A 528 (2011), pp. 7410–7416.10.1016/j.msea.2011.06.037
  • A. Farrow and C. Laird, Precipitation in solution-treated aluminium–4 wt% copper under cyclic strain, Philos. Mag. 90 (2010), pp. 3549–3566.10.1080/14786435.2010.491809
  • J.B. Clark and A.J. McEvily, Interaction of dislocations and structures in cyclically strained aluminum alloys, Acta Metall. 12 (1964), pp. 1359–1372.10.1016/0001-6160(64)90124-5
  • C.A. Stubbington and P.J.E. Forsyth, Some observations on microstructural damage produced by fatigue of an aluminium-7.5% zinc-2.5% magnesium alloy at temperatures between room temperature and 250 °C, Acta Metall. 14 (1966), pp. 5–12.10.1016/0001-6160(66)90265-3
  • W. Vogel, M. Wilhelm, and V. Gerold, Persistent slip bands in fatigued peak aged Al–Zn–Mg single crystals – I. Development of dislocation microstructure and change of precipitation distribution, Acta Metall. 30 (1982), pp. 21–30.
  • R.G. Pahl and J.B. Cohen, Effects of fatigue on the GP zones in Al–Zn alloys, Metall. Trans. A 15 (1984), pp. 1519–1529.10.1007/BF02657791
  • S.P. Bhat and C. Laird, High temperature cyclic deformation of precipitation hardened alloy – I. Partially coherent precipitates, Acta Metall. 27 (1979), pp. 1861–1871.10.1016/0001-6160(79)90077-4
  • S.P. Bhat and C. Laird, High temperature cyclic deformation of precipitation hardened alloy – II. Fully coherent precipitates, Acta Metallurgica 27 (1979), pp. 1873–1883.10.1016/0001-6160(79)90078-6
  • C. Calabrese and C. Laird, Cyclic stress–strain response of two-phase alloys Part I. Microstructures containing particles penetrable by dislocations, Mater. Sci. Eng. 13 (1974), pp. 141–157.10.1016/0025-5416(74)90182-7
  • R.E. Stoltz and A.G. Pineau, Dislocation–precipitate interaction and cyclic stress–strain behavior of a γ′ strengthened superalloy, Mater. Sci. Eng. 34 (1978), pp. 275–284.10.1016/0025-5416(78)90060-5
  • H.D. Chandler and J.V. Bee, Cyclic strain induced precipitation in a solution treated aluminium alloy, Acta Metall. 35 (1987), pp. 2503–2510.10.1016/0001-6160(87)90147-7
  • P.C. Lam, T.S. Srivatsan, B. Hotton, and M. Al-Hajri, Cyclic stress response characteristics of an aluminum–magnesium–silicon alloy, Mater. Lett. 45 (2000), pp. 186–190.10.1016/S0167-577X(00)00102-6
  • N. Souami, M. Fagot, P. Chomel, and J.P. Cottu, Fatigue particle coarsening in Al–Zn alloy, Scr. Metall. 20 (1986), pp. 1673–1676.10.1016/0036-9748(86)90267-X
  • W.Z. Han, A. Vinogradov, and C.R. Hutchinson, On the reversibility of dislocation slip during cyclic deformation of Al alloys containing shear-resistant particles, Acta Mater. 59 (2011), pp. 3720–3736.10.1016/j.actamat.2011.03.007
  • T.S. Srivatsan, The low-cycle fatigue and cyclic fracture behaviour of 7150 aluminium alloy, Int. J. Fatigue 13 (1991), pp. 313–321.10.1016/0142-1123(91)90358-6
  • C. Calabrese and C. Laird, Cyclic stress–strain response of two-phase alloys Part II. Particles not penetrated by dislocations, Mater. Sci. Eng. 13 (1974), pp. 159–174.10.1016/0025-5416(74)90183-9
  • G.A. Edwards, K. Stiller, G.L. Dunlop, and M.J. Couper, The precipitation sequence in Al–Mg–Si alloys, Acta Mater. 46 (1998), pp. 3893–3904.10.1016/S1359-6454(98)00059-7
  • D.J. Chakrabarti and D.E. Laughlin, Phase relations and precipitation in Al–Mg–Si alloys with Cu additions, Prog. Mater. Sci. 49 (2004), pp. 389–410.10.1016/S0079-6425(03)00031-8
  • S.K. Panigrahi and R. Jayaganthan, A study on the combined treatment of cryorolling, short-annealing, and aging for the development of ultrafine-grained al 6063 alloy with enhanced strength and ductility, Metall. Mater. Trans. A 41 (2010), pp. 2675–2690.10.1007/s11661-010-0328-x
  • S. Nandy, K.K. Ray, and D. Das, Process model to predict yield strength of AA6063 alloy, Mater. Sci. Eng. A 644 (2015), pp. 413–424.10.1016/j.msea.2015.07.070
  • R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 3rd ed., John Wiley and Sons, New York, NY, 1989.
  • C. Laird, V.J. Langelo, M. Hollrah, N.C. Yang, and R. de la Veaux, The cyclic stress–strain response of precipitation hardened Al–15 wt.% Ag alloy, Mater. Sci. Eng. 32 (1978), pp. 137–160.10.1016/0025-5416(78)90033-2
  • M. Hörnqvist and B. Karlsson, Influence of heat treatment on the cyclic deformation properties of aluminium alloy AA7030, Mater. Sci. Eng. A 479 (2008), pp. 345–355.10.1016/j.msea.2007.06.078
  • L.P. Borrego, L.M. Abreu, J.M. Costa, and J.M. Ferreira, Analysis of low cycle fatigue in Al–Mg–Si aluminium alloys, Eng. Failure Anal. 11 (2004), pp. 715–725.10.1016/j.engfailanal.2003.09.003
  • Z.N. Haji, Low cycle fatigue behavior of aluminum alloys AA2024-T6 and AA7020-T6, Diyala J. Eng. Sci. (2010), pp. 127–137.
  • S.K. Paul, S. Majumdar, and S. Kundu, Low cycle fatigue behavior of thermo-mechanically treated rebar, Mater. Des. 58 (2014), pp. 402–411.10.1016/j.matdes.2014.01.079
  • S.C. Roy, S. Goyal, R. Sandhya, and S.K. Ray, Analysis of hysteresis loops of 316L(N) stainless steel under low cycle fatigue loading conditions, Procedia Eng. 55 (2013), pp. 165–170.10.1016/j.proeng.2013.03.237
  • S. Nandy, A.P. Sekhar, D. Das, S.J. Hossain, and K.K. Ray, Influence of dynamic precipitation during low cycle fatigue of under-aged AA6063 alloy, Trans. Indian Inst. Met. 69 (2016), pp. 319–324.10.1007/s12666-015-0805-4
  • H. Abdel-Raouf, T.H. Topper, and A. Plumtree, Cyclic plasticity and Masing behaviour in metals and alloys, 4th International Conference on Fracture, Waterloo, 1977.
  • H.J. Christ and H. Mughrabi, Cyclic stress–strain response and microstructure under variable amplitude loading, Fatigue Fract. Eng. Mater. Struct. 19 (1996), pp. 335–348.10.1111/ffe.1996.19.issue-2-3
  • B.T. Ma, Z.G. Wang, A.L. Radin, and C. Laird, Asymmetry behavior between tension and compression in the cyclic deformation of copper single crystals and other ductile metals, Mater. Sci. Eng. A 129 (1990), pp. 197–206.10.1016/0921-5093(90)90266-6
  • M.E. Mercer, S.L. Dickerson, and J.C. Gibeling, Cyclic deformation of dispersion-strengthened aluminum alloys, Mater. Sci. Eng. A 203 (1995), pp. 46–58.10.1016/0921-5093(95)09845-3
  • J.M. Meininger, S.L. Dickerson, and J.C. Gibeling, Observations of tension/compression asymmetry in the cyclic deformation of aluminum alloy 7075, Fatigue Fract. Eng. Mater. Struct. 19 (1996), pp. 85–97.
  • M. Hörnqvist and B. Karlsson, Dynamic strain ageing and dynamic precipitation in AA7030 during cyclic deformation, Procedia Eng. 2 (2010), pp. 265–273.10.1016/j.proeng.2010.03.029
  • L.F. Coffin Jr, A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal, KAPL-853, Knolls Atomic Power Lab., 1953.
  • S.S. Manson, Behavior of materials under conditions of thermal stress, Tech. Rep. 1170, National Advisory Commission for Aeronautics, Lewis Flight Propulsion Laboratory, Cleveland, OH, 1954.
  • S. Suresh, Fatigue of materials, 2nd ed., Cambridge University Press, Cambridge, 1998.10.1017/CBO9780511806575
  • S.G.S. Raman and V.M. Radhakrishnan, On cyclic stress–strain behaviour and low cycle fatigue life, Mater. Des. 23 (2002), pp. 249–254.10.1016/S0261-3069(01)00083-8
  • J. Morrow, Cyclic plastic strain energy and fatigue of metals, in Internal Friction, Damping, and Cyclic Plasticity, ASTM International, Philadelphia, PA, 1965, pp. 45–84.10.1520/STP378-EB
  • B. Tomkins, Fatigue crack propagation – an analysis, Philos. Mag. 18 (1968), pp. 1041–1066.10.1080/14786436808227524
  • U. Essmann and H. Mughrabi, Annihilation of dislocations during tensile and cyclic deformation and limits of dislocation densities, Philos. Mag. A 40 (1979), pp. 731–756.10.1080/01418617908234871
  • T.S. Srivatsan, S. Sriram, and C. Daniels, Influence of temperature on cyclic stress response and fracture behavior of aluminum alloy 6061, Eng. Fract. Mech. 56 (1997), pp. 531–550.10.1016/S0013-7944(96)00102-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.