737
Views
21
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Crystal plasticity modeling of irradiation growth in Zircaloy-2

ORCID Icon, &
Pages 2018-2051 | Received 05 Jul 2016, Accepted 24 Apr 2017, Published online: 10 May 2017

References

  • S.N. Buckley, Irradiation growth, in Proceedings in International Conference: Properties of Reactor Materials and Effects of Irradiation Damage, Butterworths, London, 1962, p. 413.
  • V. Fidleris, The irradiation creep and growth phenomena, J. Nucl. Mater. 159 (1988), pp. 22–42.10.1016/0022-3115(88)90083-9
  • G.J.C. Carpenter, R.H. Zee, and A. Rogerson, Irradiation growth of zirconium single crystals: A review, J. Nucl. Mater. 159 (1988), pp. 86–100.10.1016/0022-3115(88)90087-6
  • A. Rogerson, Irradiation growth in zirconium and its alloys, J. Nucl. Mater. 159 (Oct. 1988), pp. 43–61.
  • R.A. Holt, In-reactor deformation of cold-worked Zr–2.5Nb pressure tubes, J. Nucl. Mater. 372(2–3) (2008), pp. 182–214.10.1016/j.jnucmat.2007.02.017
  • R.A. Holt, In-reactor deformation of Zirconium alloy components, J. ASTM Int. 5(6) (2008), pp. 3–18.
  • A.R. Causey, C.H. Woo, and R.A. Holt, The effect of intergranular stresses on the texture dependence of irradiation growth in zirconium alloys, J. Nucl. Mater. 159 (1988), pp. 225–236.10.1016/0022-3115(88)90095-5
  • G.S. Was, Fundamentals of Radiation Material Science: Metals and Alloys, Springer, Berlin, 2007.
  • M. Griffiths, R.A. Holt, and A. Rogerson, Microstructural aspects of accelerated deformation of Zircaloy nuclear reactor components during service, J. Nucl. Mater. 225 (1995), pp. 245–258.10.1016/0022-3115(94)00687-3
  • R.A. Holt and R.W. Gilbert, 〈c〉 Component dislocations in annealed Zircaloy irradiated at about 570 K, J. Nucl. Mater. 137(3) (1986), pp. 185–189.10.1016/0022-3115(86)90218-7
  • M. Griffiths and R.W. Gilbert, The formation of c-component defects in zirconium alloys during neutron irradiation, J. Nucl. Mater. 150(2) (1987), pp. 169–181.10.1016/0022-3115(87)90072-9
  • R.A. Murgatroyd and A. Rogerson, An assessment of the influence of microstructure and test conditions on the irradiation growth phenomenon in zirconium alloys, J. Nucl. Mater. 90(1–3) (1980), pp. 240–248.10.1016/0022-3115(80)90261-5
  • R.H. Zee, G.J.C. Carpenter, A. Rogerson, and J.F. Watters, Irradiation growth in deformed zirconium, J. Nucl. Mater. 150(3) (1987), pp. 319–330.10.1016/0022-3115(87)90010-9
  • R.A. Holt, A.R. Causey, N. Christodoulou, M. Griffiths, E.T.C. Ho, and C.H. Woo, Non-linear irradiation growth of cold-worked Zircaloy-2, presented at the Zirconium in the Nuclear Industry: Eleventh International Symposium, ASTM STP 1295, E.R. Bradley and G.P. Sabol, eds., American Society for Testing and Materials,1996, pp. 623–637.
  • M. Griffiths, A review of microstructure evolution in zirconium alloys during irradiation, J. Nucl. Mater. 159 (1988), pp. 190–218.10.1016/0022-3115(88)90093-1
  • C. Hellio, C.H. de Novion, and L. Boulanger, Influence of alloying elements on the dislocation loops created by Zr+ ion or by electron irradiation in α-zirconium, J. Nucl. Mater. 159 (1988), pp. 368–378.10.1016/0022-3115(88)90103-1
  • M. Griffiths, D. Gilbon, C. Regnard, and C. Lemaignan, HVEM study of the effects of alloying elements and impurities on radiation damage in Zr-alloys, J. Nucl. Mater. 205 (1993), pp. 273–283.10.1016/0022-3115(93)90090-L
  • P.A. Turner and C.N. Tomé, Self-consistent modeling of visco-elastic polycrystals: Application to irradiation creep and growth, J. Mech. Phys. Solids 41(7) (1993), pp. 1191–1211.10.1016/0022-5096(93)90090-3
  • C.N. Tomé, N. Christodoulou, P. A. Turner, M. A. Miller, C. H. Woo, J. Root, and T. M. Holden, Role of internal stresses in the transient of irradiation growth of Zircaloy-2, J. Nucl. Mater. 227(3) (1996), pp. 237–250.10.1016/0022-3115(95)00140-9
  • P.A. Turner, C.N. Tomé, N. Christodoulou, and C.H. Woo, A self-consistent model for polycrystals undergoing simultaneous irradiation and thermal creep, Philos. Mag. A 79(10) (1999), pp. 2505–2524.10.1080/01418619908214296
  • C.N. Tomé, C.B. So, and C.H. Woo, Self-consistent calculation of steady-state creep and growth in textured zirconium, Philos. Mag. A 67(4) (1993), pp. 917–930.10.1080/01418619308213968
  • R. Bullough and M.H. Wood, Mechanisms of radiation induced creep and growth, J. Nucl. Mater. 90(1–3) (1980), pp. 1–21.10.1016/0022-3115(80)90241-X
  • C.H. Woo and U. Gösele, Dislocation bias in an anisotropic diffusive medium and irradiation growth, J. Nucl. Mater. 119(2–3) (1983), pp. 219–228.10.1016/0022-3115(83)90198-8
  • C.H. Woo, Theory of irradiation deformation in non-cubic metals: Effects of anisotropic diffusion, J. Nucl. Mater. 159 (1988), pp. 237–256.10.1016/0022-3115(88)90096-7
  • R.A. Holt, C.H. Woo, and C.K. Chow, Production bias – A potential driving force for irradiation growth, J. Nucl. Mater. 205 (1993), pp. 293–300.10.1016/0022-3115(93)90092-D
  • F. Christien and A. Barbu, Cluster dynamics modelling of irradiation growth of zirconium single crystals, J. Nucl. Mater. 393(1) (2009), pp. 153–161.10.1016/j.jnucmat.2009.05.016
  • S.I. Golubov, A.V. Barashev, and R.E. Stoller, On the origin of radiation growth of hcp crystals, ORNL/TM-2011/473, Oak Ridge, TN, ORNL/TM-2011/473, Oak Ridge National Laboratory, 2011.
  • A.V. Barashev, S.I. Golubov, and R.E. Stoller, Theoretical investigation of microstructure evolution and deformation of zirconium under neutron irradiation, J. Nucl. Mater. 461 (2015), pp. 85–94.10.1016/j.jnucmat.2015.02.001
  • S.I. Golubov, A.V. Barashev, R.E. Stoller, and B.N. Singh, Breakthrough in understanding radiation growth of zirconium, in Zirconium in the Nuclear Industry, 17th International Symposium, STP 1543, Robert Comstock and Pierre Barberis, eds., ASTM International, West Conshohocken, PA, 2014, pp. 729–758.
  • R.A. Lebensohn and C.N. Tomé, A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys, Acta Metall. Mater. 41(9) (1993), pp. 2611–2624.10.1016/0956-7151(93)90130-K
  • G.D. Samolyuk, A.V. Barashev, S.I. Golubov, Y.N. Osetsky, and R.E. Stoller, Analysis of the anisotropy of point defect diffusion in hcp Zr, Acta Mater. 78 (2014), pp. 173–180.10.1016/j.actamat.2014.06.024
  • S.J. Wooding, L.M. Howe, F. Gao, A.F. Calder, and D.J. Bacon, A molecular dynamics study of high-energy displacement cascades in α-zirconium, J. Nucl. Mater. 254(2–3) (1998), pp. 191–204.10.1016/S0022-3115(97)00365-6
  • F. Gao, D.J. Bacon, L.M. Howe, and C.B. So, Temperature-dependence of defect creation and clustering by displacement cascades in α-zirconium, J. Nucl. Mater. 294(3) (2001), pp. 288–298.10.1016/S0022-3115(01)00483-4
  • M.J. Norgett, M.T. Robinson, and I.M. Torrens, A proposed method of calculating displacement dose rates, Nucl. Eng. Des 33(1) (1975), pp. 50–54.10.1016/0029-5493(75)90035-7
  • S.I. Golubov, A.V. Barashev, and R.E. Stoller, Reaction rate theory, in Reference Module in Materials Science and Materials Engineering, Saleem Hashmi, editor-in-chief, Elsevier, Oxford, 2016, pp. 1–41.
  • B.N. Singh, M. Eldrup, S.J. Zinkle, and S.I. Golubov, On grain-size-dependent void swelling in pure copper irradiated with fission neutrons, Philos. Mag. A 82(6) (2002), pp. 1137–1158.10.1080/01418610208240021
  • S.I. Golubov, A.V. Barashev, and R.E. Stoller, 1.13 – Radiation damage theory, in Comprehensive Nuclear Materials, R.J.M. Konings, ed., Elsevier, Oxford, 2012, pp. 357–391.
  • F. Christien and A. Barbu, Effect of self-interstitial diffusion anisotropy in electron-irradiated zirconium: A cluster dynamics modeling, J. Nucl. Mater. 346(2–3) (2005), pp. 272–281.10.1016/j.jnucmat.2005.06.024
  • E. Orowan, Problems of plastic gliding, Proc. Phys. Soc. 52(1) (1940), pp. 8–22.10.1088/0959-5309/52/1/303
  • D. Fainstein-Pedraza, E.J. Savino, and A.J. Pedraza, Irradiation-growth of zirconium-base alloys, J. Nucl. Mater. 73(2) (1978), pp. 151–168.10.1016/0022-3115(78)90556-1
  • J.P. Foster, W.G. Wolfer, A. Biancheria, and A. Boltax, Analysis of irradiation-induced creep of stainless steel in fast spectrum reactors, in Proceedings of the BNES Conference on Irradiation Embrittlement and Creep in Fuel Cladding and Core Components, London, UK, 1972, p. 273.
  • K. Ehrlich, Irradiation creep and interrelation with swelling in austenitic stainless steels, J. Nucl. Mater. 100(1–3) (1981), pp. 149–166.10.1016/0022-3115(81)90531-6
  • L.K. Mansur, Irradiation creep by climb-enabled glide of dislocations resulting from preferred absorption of point defects, Philos. Mag. A 39(4) (1979), pp. 497–506.10.1080/01418617908239286
  • S.I. Golubov, A.V. Barashev, and F.A. Garner, A feasible mechanism of irradiation creep explaining its observed cessation at high neutron doses, manuscript in preparation.
  • M. Griffiths, R.W. Gilbert, V. Fidleris, R.P. Tucker, and R.B. Adamson, Neutron damage in zirconium alloys irradiated at 644 to 710 k, J. Nucl. Mater. 150(2) (1987), pp. 159–168.10.1016/0022-3115(87)90071-7
  • M. Griffiths, M.H. Loretto, and R.E. Smallman, Anisotropic distribution of dislocation loops in HVEM-irradiated Zr, Philos. Mag. A 49(5) (1984), pp. 613–624.10.1080/01418618408233290
  • M. Griffiths, M.H. Loretto, and R.E. Smallman, Electron damage in zirconium, J. Nucl. Mater. 115(2–3) (1983), pp. 323–330.10.1016/0022-3115(83)90323-9
  • M. Griffiths, R.W. Gilbert, and G.J.C. Carpenter, Phase instability, decomposition and redistribution of intermetallic precipitates in Zircaloy-2 and -4 during neutron irradiation, J. Nucl. Mater. 150(1) (1987), pp. 53–66.10.1016/0022-3115(87)90093-6
  • M. Topping, A. Harte, P. Frankel, G. Sundell, M. Thuvander, H. Andren, D. Jadernas, P. Teiland, J. Romero, E. Darby, S. Dumbill, L. Hallstadius, and M. Preuss, The effect of iron on dislocation evolution in model and commercial Zirconium alloys, in 18th International Symposium on Zirconium in the Nuclear Industry, Hilton Head, SC, 2016.
  • Y. Idrees, E. Francis, Z. Yao, A. Korinek, M.A. Kirk, M. Sattari, M. Preuss, M. Daymond, Effects of alloying elements on the formation of -component loops in Zr alloy Excel under heavy ion irradiation, J. Mater. Res. 30(09) (2015), pp. 1310–1334.10.1557/jmr.2015.89
  • B.M. Pande and M.S. Anand, Low temperature (4.6 K) fast neutron irradiation of zirconium and zircaloys 2 and 4: Dose and recovery studies, J. Nucl. Mater. 92(2–3) (1980), pp. 313–317.10.1016/0022-3115(80)90116-6
  • H.H. Neely, Damage rate and recovery measurements on zirconium after electron irradiation at low temperatures, Rad. Effect 3(2) (1970), pp. 189–201.10.1080/00337577008236274
  • L. Tournadre, F. Onimus, J. -L. Béchade, D. Gilbon, J. -M. Cloué, J. -P. Mardon, X. Feaugas, Toward a better understanding of the hydrogen impact on the radiation induced growth of zirconium alloys, J. Nucl. Mater. 441(1–3) (2013), pp. 222–231.10.1016/j.jnucmat.2013.05.045
  • G.S. Was, Challenges to the use of ion irradiation for emulating reactor irradiation, J. Mater. Res. 30(09) (2015), pp. 1158–1182.10.1557/jmr.2015.73
  • R.A. Murgatroyd and A. Rogerson, Irradiation growth in zirconium and its alloys, in BNES Conference on Dimensional Stability and Mechanical Behaviour of Irradiated Metals and Alloys, London, UK, 1984, p. 93.
  • V. Fidleris, R.P. Tucker, and R.B. Adamson, An overview of microstructural and experimental factors that affect the irradiation growth behavior of zirconium alloys, in Zirconium in the Nuclear Industry: 7th International Symposium vol. 939, R.B. Adamson and L.F.P. Von Swam, eds., ASTM Spec. Techn. Publ, 1987, pp. 49–85.
  • A. Patra, C.N. Tomé, S.I. Golubov, and A.V. Barashev, Modeling radiation-induced deformation of Zr-based polycrystals with novel mechanisms of radiation growth and creep, manuscript in preparation.
  • F. Tinti, Uniaxial in-reactor creep of Zircaloy-2: Stress, flux, and temperature dependence, Nucl. Technol. 60(1) (1983), pp. 104–113.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.