392
Views
40
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Grain refinement and strengthening of a Cu–0.1Cr–0.06Zr alloy subjected to equal channel angular pressing

ORCID Icon &
Pages 2053-2076 | Received 07 Feb 2017, Accepted 25 Apr 2017, Published online: 05 May 2017

References

  • N.Y. Tang, D.M.R. Taplin, and G.L. Dunlop, Precipitation and aging in high-conductivity Cu–Cr alloys with additions of zirconium and magnesium, Mater. Sci. Technol. 1 (1985), pp. 270–275.10.1179/mst.1985.1.4.270
  • I.S. Batra, G.K. Dey, U.D. Kulkarni, and S. Banerjee, Microstructure and properties of a Cu–Cr–Zr alloy, J. Nucl. Mater. 299 (2001), pp. 91–100.10.1016/S0022-3115(01)00691-2
  • H.T. Zhou, J.W. Zhong, X. Zhou, Z.K. Zhao, and Q.B. Li, Microstructure and properties of Cu–1.0 Cr–0.2 Zr–0.03 Fe alloy, Mater. Sci. Eng.: A 498 (2008), pp. 225–230.10.1016/j.msea.2008.07.061
  • L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu, Ultrahigh strength and high electrical conductivity in copper, Science 304 (2004), pp. 422–426.10.1126/science.1092905
  • G. Purcek, H. Yanar, O. Saray, I. Karaman, and H.J. Maier, Effect of precipitation on mechanical and wear properties of ultrafine-grained Cu–Cr–Zr alloy, Wear 311 (2014), pp. 149–158.10.1016/j.wear.2014.01.007
  • X.F. Li, A.P. Dong, L.T. Wang, Z. Yu, and L. Meng, Thermal stability of heavily drawn Cu–0.4 wt.% Cr–0.12 wt.% Zr–0.02 wt.% Si–0.05 wt.% Mg, J. Alloys Compd. 509 (2011), pp. 4092–4097.10.1016/j.jallcom.2010.05.166
  • N.D. Stepanov, A.V. Kuznetsov, G.A. Salishchev, N.E. Khlebova, and V.I. Pantsyrny, Evolution of microstructure and mechanical properties in Cu–14% Fe alloy during severe cold rolling, Mater. Sci. Eng.: A 564 (2013), pp. 264–272.10.1016/j.msea.2012.11.121
  • O.V. Mishin and G. Gottstein, Microstructural aspects of rolling deformation in ultrafine-grained copper, Philos. Mag. A 78 (1998), pp. 373–388.10.1080/01418619808241909
  • F.H. Dalla Torre, E.V. Pereloma, and C.H.J. Davies, Strain hardening behaviour and deformation kinetics of Cu deformed by equal channel angular extrusion from 1 to 16 passes, Acta Mater. 54 (2006), pp. 1135–1146.10.1016/j.actamat.2005.10.041
  • R. Mishnev, I. Shakhova, A. Belyakov, and R. Kaibyshev, Deformation microstructures, strengthening mechanisms, and electrical conductivity in a Cu–Cr–Zr alloy, Mater. Sci. Eng.: A 629 (2015), pp. 29–40.10.1016/j.msea.2015.01.065
  • A. Singh, L. Tang, M. Dao, L. Lu, and S. Suresh, Fracture toughness and fatigue crack growth characteristics of nanotwinned copper, Acta Mater. 59 (2011), pp. 2437–2446.10.1016/j.actamat.2010.12.043
  • Z.J. Zhang, Q.Q. Duan, X.H. An, S.D. Wu, G. Yang, and Z.F. Zhang, Microstructure and mechanical properties of Cu and Cu–Zn alloys produced by equal channel angular pressing, Mater. Sci. Eng.: A 528 (2011), pp. 4259–4267.10.1016/j.msea.2010.12.080
  • A. Hernández-Pérez, M. Eddahbi, M.A. Monge, A. Muñoz, and B. Savoini, Microstructure and mechanical properties of an ITER-grade Cu–Cr–Zr alloy processed by equal channel angular pressing, Fusion Eng. Des. 98–99 (2015), pp. 1978–1981.10.1016/j.fusengdes.2015.06.180
  • S.V. Dobatkin, D.V. Shangina, N.R. Bochvar, and M. Janeček, Effect of deformation schedules and initial states on structure and properties of Cu–0.18% Zr alloy after high-pressure torsion and heating, Mater. Sci. Eng.: A 598 (2014), pp. 288–292.10.1016/j.msea.2013.12.104
  • D.V. Shangina, N.R. Bochvar, M.V. Gorshenkov, H. Yanar, G. Purcek, and S.V. Dobatkin, Influence of microalloying with zirconium on the structure and properties of Cu–Cr alloy after high pressure torsion, Mater. Sci. Eng.: A 650 (2016), pp. 63–66.10.1016/j.msea.2015.10.008
  • H. Fuxiang, M. Jusheng, N. Honglong, G. Zhiting, L. Chao, G. Shumei, Y. Xuetao, W. Tao, L. Hong, and L. Huafen, Analysis of phases in a Cu–Cr–Zr alloy, Scr. Mater. 48 (2003), pp. 97–102.10.1016/S1359-6462(02)00353-6
  • A. Chbihi, X. Sauvage, and D. Blavette, Atomic scale investigation of Cr precipitation in copper, Acta Mater. 60 (2012), pp. 4575–4585.10.1016/j.actamat.2012.01.038
  • G.B. Lin, Z.D. Wang, M.K. Zhang, H. Zhang, and M. Zhao, Heat treatment method for making high strength and conductivity Cu–Cr–Zr alloy, Mater. Sci. Technol. 27 (2011), pp. 966–969.10.1179/026708310X12815992418210
  • T. Fujii, H. Nakazawa, M. Kato, and U. Dahmen, Crystallography and morphology of nanosized Cr particles in a Cu–0.2% Cr alloy, Acta Mater. 48 (2000), pp. 1033–1045.10.1016/S1359-6454(99)00411-5
  • Q. Liu, X. Zhang, Y. Ge, J. Wang, and J.Z. Cui, Effect of processing and heat treatment on behavior of Cu–Cr–Zr alloys to railway contact wire, Metall. Mater. Trans. A 37 (2006), pp. 3233–3238.10.1007/BF02586158
  • L. Peng, H. Xie, G. Huang, Y. Li, X. Yin, and X. Feng, The phase transformation and its effects on properties of a Cu−0.12wt% Zr alloy, Mater. Sci. Eng.: A 633 (2015), pp. 28–34.10.1016/j.msea.2015.02.077
  • K. Wang, K.-F. Liu, and J.-B. Zhang, Microstructure and properties of aging Cu–Cr–Zr alloy, Rare Met. 33 (2014), pp. 134–138.10.1007/s12598-014-0244-0
  • J.Y. Cheng, B. Shen, and F.X. Yu, Precipitation in a Cu–Cr–Zr–Mg alloy during aging, Mater. Char. 81 (2013), pp. 68–75.10.1016/j.matchar.2013.04.008
  • S. Zhang, R. Li, H. Kang, Z. Chen, W. Wang, C. Zou, T. Li, and T Wang, A high strength and high electrical conductivity Cu–Cr–Zr alloy fabricated by cryorolling and intermediate aging treatment, Mater. Sci. Eng.: A 680 (2017), pp. 108–114.10.1016/j.msea.2016.10.087
  • R.W. Knights and P. Wilkes, Precipitation of chromium in copper and copper-nickel base alloys, Metall. Trans. 4 (1973), pp. 2389–2393.10.1007/BF02669380
  • G.C. Weatherly, P. Humble, and D. Borland, Precipitation in a Cu-0, 55 wt.% Cr alloy, Acta Metall. 27 (1979), pp. 1815–1828.10.1016/0001-6160(79)90072-5
  • H. Beladi, P. Cizek, and P.D. Hodgson, Dynamic recrystallization of austenite in Ni-30 Pct fe model alloy: Microstructure and texture evolution, Metall. Mater. Trans. A 40 (2009), pp. 1175–1189.10.1007/s11661-009-9799-z
  • A. Vinogradov, T. Ishida, K. Kitagawa, and V.I. Kopylov, Effect of strain path on structure and mechanical behavior of ultra-fine grain Cu–Cr alloy produced by equal-channel angular pressing, Acta Mater. 53 (2005), pp. 2181–2192.10.1016/j.actamat.2005.01.046
  • A. Vinogradov, V. Patlan, Y. Suzuki, K. Kitagawa, and V.I. Kopylov, Structure and properties of ultra-fine grain Cu–Cr–Zr alloy produced by equal-channel angular pressing, Acta Mater. 50 (2002), pp. 1639–1651.10.1016/S1359-6454(01)00437-2
  • G.J. Raab, R.Z. Valiev, T.C. Lowe, and Y.T. Zhu, Continuous processing of ultrafine grained Al by ECAP–Conform, Mater. Sci. Eng.: A 382 (2004), pp. 30–34.10.1016/j.msea.2004.04.021
  • G. Purcek, H. Yanar, M. Demirtas, Y. Alemdag, D.V. Shangina, and S.V. Dobatkin, Optimization of strength, ductility and electrical conductivity of Cu–Cr–Zr alloy by combining multi-route ECAP and aging, Mater. Sci. Eng.: A 649 (2016), pp. 114–122.10.1016/j.msea.2015.09.111
  • S. Gourdet and F. Montheillet, Acta Mater, A model of continuous dynamic recrystallization 51 (2003), pp. 2685–2699.
  • F.J. Humphreys, P.B. Prangnell, J.R. Bowen, A. Gholinia, and C. Harris, Developing stable fine–grain microstructures by large strain deformation, Philos. Trans. Roy. Soc. A: Math. Phys. Eng. Sci. 357 (1999), pp. 1663–1681.10.1098/rsta.1999.0395
  • F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Oxford, 2004.
  • T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Prog. Mater. Sci. 60 (2014), pp. 130–207.10.1016/j.pmatsci.2013.09.002
  • A.P. Zhilyaev and T.G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Prog. Mater. Sci. 53 (2008), pp. 893–979.10.1016/j.pmatsci.2008.03.002
  • R.Z. Valiev and T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci. 51 (2006), pp. 881–981.10.1016/j.pmatsci.2006.02.003
  • Y. Estrin and A. Vinogradov, Extreme grain refinement by severe plastic deformation: A wealth of challenging science, Acta Mater. 61 (2013), pp. 782–817.10.1016/j.actamat.2012.10.038
  • K. Valdés León, M.A. Munoz-Morris, and D.G. Morris, Optimisation of strength and ductility of Cu–Cr–Zr by combining severe plastic deformation and precipitation, Mater. Sci. Eng. A 536 (2012), pp. 181–189.
  • J.-H. Su, Q.-M. Dong, P. Liu, H.-J. Li, and B.-X. Kang, Research on aging precipitation in a Cu–Cr–Zr–Mg alloy, Mater. Sci. Eng.: A 392 (2005), pp. 422–426.10.1016/j.msea.2004.09.041
  • A. Belyakov, M. Murayama, Y. Sakai, K. Tsuzaki, M. Okubo, M. Eto, and T. Kimura, Development of a high-strength high-conductivity Cu–Ni–P alloy. Part II: Processing by severe deformation, J. Electron. Mater. 35 (2006), pp. 2000–2008.10.1007/s11664-006-0306-7
  • R. Dobosz, M. Lewandowska, and K.J. Kurzydlowski, The effect of grain size diversity on the flow stress of nanocrystalline metals by finite-element modelling, Scr. Mater. 67 (2012), pp. 408–411.10.1016/j.scriptamat.2012.05.043
  • K.J. Kurzydłowski and J.J. Bucki, Flow stress dependence on the distribution of grain size in polycrystals, Acta Metall. Mater. 41 (1993), pp. 3141–3146.10.1016/0956-7151(93)90044-S
  • K.J. Kurzydłowski, A model for the flow stress dependence on the distribution of grain size in polycrystals, Scr. Metall. Mater. 24 (1990), pp. 879–883.10.1016/0956-716X(90)90129-5
  • M. Cabibbo, Microstructure strengthening mechanisms in different equal channel angular pressed aluminum alloys, Mater. Sci. Eng.: A 560 (2013), pp. 413–432.10.1016/j.msea.2012.09.086
  • M. Dixit, R.S. Mishra, and K.K. Sankaran, Structure–property correlations in Al 7050 and Al 7055 high-strength aluminum alloys, Mater. Sci. Eng.: A 478 (2008), pp. 163–172.10.1016/j.msea.2007.05.116
  • M. Sauzay and L.P. Kubin, Scaling laws for dislocation microstructures in monotonic and cyclic deformation of fcc metals, Prog. Mater. Sci. 56 (2011), pp. 725–784.10.1016/j.pmatsci.2011.01.006
  • F.F. Lavrentev, The type of dislocation interaction as the factor determining work hardening, Mater. Sci. Eng. 46 (1980), pp. 191–208.10.1016/0025-5416(80)90175-5
  • A.P. Zhilyaev, I. Shakhova, A. Morozova, A. Belyakov, and R. Kaibyshev, Grain refinement kinetics and strengthening mechanisms in Cu–0.3Cr–0.5Zr alloy subjected to intense plastic deformation, Mater. Sci. Eng.: A 654 (2016), pp. 131–142.10.1016/j.msea.2015.12.038
  • F.M. Smits, Measurement of sheet resistivities with the four-point probe, Bell Syst. Tech. J. 37 (1958), pp. 711–718.10.1002/bltj.1958.37.issue-3
  • P.B. Hirsch, A. Howie, R.B. Nicholson, D.W. Pashley, M.J. Whelan, and L. Marton, Electron Microscopy of Thin Crystals, Butterworths Scientific Publications, London, 1965.
  • D.B. Williams and C.D. Carter, Transmission Electron Microscopy, Plenum Press, New York, NY, 1996.10.1007/978-1-4757-2519-3
  • F.X. Lin, Y.B. Zhang, N. Tao, W. Pantleon, and D. Juul, Jensen, Effects of heterogeneity on recrystallization kinetics of nanocrystalline copper prepared by dynamic plastic deformation, Acta Mater. 72 (2014), pp. 252–261.
  • A. Kolmogorov, K statisticheskojteoriikristallizaciimetallov, Izv. Acad. Sci. USSR, Math. Ser. 1 (1937), pp. 355–359.
  • W.A. Johnson and R.F. Mehl, Reaction kinetics in processes of nucleation and growth, Trans. Am. Inst. Min. Metall. Pet. Eng. 135 (1939), pp. 396–415.
  • M. Avrami, Kinetics of phase change. i general theory, J. Chem. Phys. 7 (1939), pp. 1103–1112.10.1063/1.1750380
  • A. Belyakov, S. Zherebtsov, M. Tikhonova, and G. Salishchev, Kinetics of grain refinement in metallic materials during large strain deformation, Mater. Phys. Mech. 24 (2015), pp. 224–231.
  • S. Malopheyev, V. Kulitskiy, and R. Kaibyshev, Deformation structures and strengthening mechanisms in an Al–Mg–Sc–Zr alloy, J. Alloys Compd. 698 (2017), pp. 957–966.10.1016/j.jallcom.2016.12.289
  • N. Kamikawa, X. Huang, N. Tsuji, and N. Hansen, Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed, Acta Mater. 57 (2009), pp. 4198–4208.10.1016/j.actamat.2009.05.017
  • N. Hansen, Boundary strengthening in undeformed and deformed polycrystals, Mater. Sci. Eng.: A 409 (2005), pp. 39–45.10.1016/j.msea.2005.04.061
  • N. Hansen, Hall–Petch relation and boundary strengthening, Scr. Mater. 51(8) (2004), pp. 801–806.10.1016/j.scriptamat.2004.06.002
  • D.A. Hughes and N. Hansen, Microstructure and strength of nickel at large strains, Acta Mater. 48 (2000), pp. 2985–3004.10.1016/S1359-6454(00)00082-3
  • M. Kato, Hall–Petch relationship and dislocation model for deformation of ultrafine-grained and nanocrystalline metals, Mater. Trans. 55 (2014), pp. 19–24.10.2320/matertrans.MA201310
  • J. Li, Petch relation and grain boundary sources, Trans. Metall. Soc. AIME 277 (1963), pp. 239–247.
  • S. Malopheyev and R. Kaibyshev, Strengthening mechanisms in a Zr-modified 5083 alloy deformed to high strains, Mater. Sci. Eng.: A 620 (2015), pp. 246–252.10.1016/j.msea.2014.10.030
  • [66] D. Lu., C.P. Wong (Eds.), Materials for Advanced Packaging, New York, NY: Springer, 2009.10.1007/978-0-387-78219-5
  • H.J. Frost and M.F. Ashby, Deformation mechanism maps: the plasticity and creep of metals and ceramics, Pergamon, Oxford, 1982.
  • G. Schoeck, Correlation between dislocation length and density, J. Appl. Phys. 33(5) (1962), pp. 1745–1747.10.1063/1.1728821
  • Z. Yanushkevich, A. Mogucheva, M. Tikhonova, A. Belyakov, and R. Kaibyshev, Structural strengthening of an austenitic stainless steel subjected to warm-to-hot working, Mater. Char. 62 (2011), pp. 432–437.10.1016/j.matchar.2011.02.005
  • W.F. Smith and J. Hashemi, Foundations of Materials Science and Engineering, 4th ed., McGraw-Hill, New York, NY, 2006.
  • S.L. Wang and L.E. Murr, Effect of prestrain and stacking-fault energy on the application of the Hall–Petch relation in fcc metals and alloys, Metallography 13(3) (1980), pp. 203–224.10.1016/0026-0800(80)90001-4
  • T.J. Harrell, T.D. Topping, H. Wen, T. Hu, J.M. Schoenung, and E.J. Lavernia, Microstructure and strengthening mechanisms in an ultrafine grained Al–Mg–Sc alloy produced by powder metallurgy, Metall. Mater. Trans. A 45 (2014), pp. 6329–6343.10.1007/s11661-014-2569-6
  • X. Quelennec and J.J. Jonas, Simulation of austenite flow curves under industrial rolling conditions using a physical dynamic recrystallization model, ISIJ Int. 52 (2012), pp. 1145–1152.10.2355/isijinternational.52.1145
  • J.J. Jonas, X. Quelennec, L. Jiang, and É. Martin, The Avrami kinetics of dynamic recrystallization, Acta Mater. 57 (2009), pp. 2748–2756.10.1016/j.actamat.2009.02.033
  • I. Holzer and E. Kozeschnik, Computer simulation of the yield strength evolution in Cu-precipitation strengthened ferritic steel, Mater. Sci. Eng.: A 527 (2010), pp. 3546–3551.10.1016/j.msea.2010.02.032
  • D.J. Bacon, U.F. Kocks, and R.O. Scattergood, The effect of dislocation self-interaction on the Orowan stress, Philos. Mag. 28 (1973), pp. 1241–1263.10.1080/14786437308227997

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.