153
Views
1
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Oriented ordering near line defects in crystals

&
Pages 2437-2467 | Received 09 Nov 2016, Accepted 23 May 2017, Published online: 04 Jul 2017

References

  • M.R. Louthan, Stress orientation of titanium hydride in titanium, Trans. Metall. Soc. AIME 227 (1963), pp. 1166–1170.
  • Y. Nakada, W.C. Leslie, T.P. Churay, and C.M. Li, Stress-orienting of Fe16N2 precipitates in an Fe–N alloy, Trans. AMS 60 (1967), pp. 223–227.
  • G. Sauthoff, Orienting of precipitating Au particles in a Fe-Mo-Au alloy by external elastic stress II: Discussion on nucleation, growth and coarsening, Z. Metallk. 67 (1976), pp. 25–29.
  • G. Sauthoff, Orienting of precipitating Au particles in a Fe-Mo-Au alloy by external elastic stress III: Experiment and discussion, Z. Metallk. 68 (1977), pp. 500–505.
  • G. Sauthoff and W. Pitsch, Orienting of Fe16N2 particles in α-iron by an external field, Philos. Mag. B 56 (1987), pp. 471–483.
  • G. Sauthoff, Influences of stresses on precipitation, J. Phys. IV Colloque C1. 6 (1996), pp. C1–87–C1-97.
  • P. Ferguson and K.H. Jack, Stress orientation during the quench-aging of nitrogen ferrite, Philos. Mag. A 52 (1985), pp. 509–523.
  • S. Muraishi, S. Kumai, and A. Sato, Stress-oriented nucleation of ω-phase plates in Al-Cu-Ag alloy, Philos. Mag. A 82 (2002), pp. 415–428.
  • A.A. Motta and L.Q. Chen, Hydride formation in zirconium alloys, JOM. 64 (2012), pp. 1403–1408.
  • F. Appel and U. Christoph, Coherency stresses and interface-related deformation phenomena in two-phase titanium aluminides, Intermetallics 7 (1999), pp. 1173–1182.
  • M.P. Puls, Effect of stress on hydride reorientation in zirconium alloys, in Solute-defect Interactions, S. Saimoto, G.R. Purdy, and G.V. Kidson, eds., Pergamon Press, Oxford, 1985, pp. 426–433.
  • A.R. Massih and L.O. Jernkvist, Stress orientation of second-phase in alloys: Hydrides in zirconium alloys, Comp. Mater. Sci. 46 (2009), pp. 1091–1097; A.R. Massih and L.O. Jernkvist, Stress orientation of second-phase in alloys: Hydrides in zirconium alloys, Comp. Mater. Sci. 48 (2009), p. 212.
  • N. Moelans, B. Blanpain, and P. Wollants, An introduction to phase-field modeling of microstructure evolution, Calphad 32 (2008), pp. 268–294.
  • D.Y. Li and L.Q. Chen, Computer simulation of stress-oriented nucleation and growth of θʹ precipitates in Al-Cu alloys, Acta Mater. 46 (1998), pp. 2573–2585.
  • V. Vaithyanathan, C. Wolverton, and L.Q. Chen, Multiscale modeling of θʹ in Al-Cu binary alloys, Acta Mater. 52 (2004), pp. 2973–2987.
  • X.Q. Ma, S.Q. Shi, C.H. Woo, and L.Q. Chen, Effect of applied load on nucleation and growth of γ-hydrides in zirconium, Comput. Mater. Sci. 23 (2002), pp. 283–290.
  • Z. Xiao, M. Hao, X. Guo, G. Tang, and S.-Q. Shi, A quantitative phase field model for hydride precipitation in zirconium alloys: Part II. Modeling of temperature dependent hydride precipitation, J. Nucl. Mater. 459 (2015), pp. 330–338.
  • A.R. Massih, Second-phase nucleation on an edge dislocation, Philos. Mag. 91 (2011), pp. 3961–3980.
  • C. Bjerkén and A.R. Massih, Phase ordering kinetics of second-phase formation near an edge dislocation, Philos. Mag. 94 (2014), pp. 569–593.
  • C. Bjerkén and A.R. Massih, Kinetics of orientational phase ordering near line defects in crystals, International Conference Solid-Solid Phase Transformation in Inorganic materials (PTM 2015), Whistler, BC, Canada, June 28–July 3 2015.
  • V.M. Nabutovskii and V. Ya, Shapiro. Localized states of the order parameter near a dislocation, Sov. Phys. JETP Lett. 26 (1977), pp. 473–475.
  • V.M. Nabutovskii and V. Ya, Shapiro. Superconducting filament near a dislocation, Sov. Phys. JETP 48 (1978), pp. 480–485.
  • I.M. Dubrovskii and M.A. Krivoglaz, Phase transitions of second kind in crystals containing dislocations, Sov. Phys. JETP 50 (1979), pp. 512–520.
  • S.N. Dorogovtsev, Phase transitions in a system with extended defects, Sov. Phys. Solid State 22 (1980), pp. 188–192.
  • S.N. Dorogovtsev, Critical properties of magnets with dislocations and point impurities, Sov. Phys. JETP 53 (1981), pp. 1070–1077.
  • I.D. Lawrie and V.V. Prudnikov, Static and dynamic properties of systems with extended defects: two-loop approximation, J. Phys. C: Solid State Phys. 17 (1984), pp. 1655–1688.
  • Y. Yamazaki, M. Ochiai, and Y. Fukuda, Critical behaviour of two-component systems with quenched random non-magnetic impurities in cubic anisotropic crystals, J. Phys. C: Solid State Phys. 18 (1985), pp. 4987–5007.
  • A.A. Boulbitch and P. Tolédano, Phase nucleation of elastic defects in crystals undergoing phase transition, Phys. Rev. Lett. 81 (1998), pp. 838–841.
  • I.F. Lyuksyutov and V.L. Pokrovskii, First-order phase transitions in systems with cubic anisotropy, JETP Lett. 21 (1975), pp. 9–11.
  • A. Onuki, Phase Transition Dynamics, Cambridge University Press, Cambridge, 2002, chapter 4, sec. 4.5.
  • Yu.A. Izyumov and V.N. Syromyatnikov, Phase Transitions and Crystal Symmetry, Kluwer, Dordrecht, 1990, Chap. 5.
  • A. Fouskova and J. Fousek, Continuum theory of domain walls in Gd2(MoO4)3, Phys. Stat. Sol. A 32 (1975), pp. 213–219.
  • E.B. Sonin and A.K. Tagantsev, Circulation lines and motion of antiphase boundaries in an improper ferroelectrics, Sov. Phys. JETP 67 (1988), pp. 396–403.
  • A.A. Bulbich and Y.M. Gufan, Inevitable symmetry lowering in a domain wall near a reordering phase transition, Sov. Phys. JETP 67 (1988), pp. 1153–1157.
  • A.A. Bulbich and Y.M. Gufan, Phase transitions in domain walls, Ferroelectrics 98 (1989), pp. 277–290.
  • A.N. Bogdanov, V.T. Telepa, P.P. Shatskii, and D.A. Yablonskii, Domain-wall phase transitions induced by an external magnetic field in the rhombic antiferromagnet(C2H5NH3)2CuC14, Sov. Phys. JETP 63 (1986), pp. 1018–1024.
  • P.M. Chaikin and T.C. Lubensky, Principles of Condensed Matter Physics, Cambridge University Press, Cambridge, 1995.
  • J.V. José, 40 Years of Berezinskii-Kosterlitz-Thouless Theory, World Scientific, Singapore, 2013.
  • L.D. Landau and E.M. Lifshitz, Theory of Elasticity, Pergamon, Oxford, 1970. Chapter IV.
  • G.F. Mazenko, Fluctuations, Order, and Defects, John Wiley & Sons, New York, 2003, Chap. 3.
  • N.W. Ashcroft and N.D. Mermin, Solid State Physics, Harcourt, New York, 1976.
  • V. Dvorak, Improper ferroelectrics, Ferroelectrics 7 (1974), pp. 1–9.
  • J.E. Guyer, D. Wheeler, and J.A. Warren, FiPy: Partial differential equations with Python, Computer Science & Engineering 11 (2009), pp. 6–15.
  • J.-R. Lee, S.M. Lee, and B. Kim, Ordering kinetics of two-dimensional O(2) models: Scaling and temperature dependence, Phys. Rev. E 52 (1999), pp. 1550–1557.
  • F. Rojas and A.D. Rutenberg, Dynamical scaling: The two-dimensional XY model following a quench, Phys. Rev. E 60 (1999), pp. 212–221.
  • B.I. Halperin, Statistical mechanics of topological defects, in Physics of Defects, R. Balian, et al., ed., North-Holland, Amsterdam, 1981.
  • A.J. Bray, Theory of phase ordering kinetics, Adv. Phys. 43 (1994), pp. 357–459.
  • R.E. Blundell and A.J. Bray, Phase-ordering dynamics of the O(2) model: Exact predictions and numerical results, Phys. Rev. E 49 (1999), pp. 4925–4937.
  • F. Liu and G.F. Mazenko, Growth kinetics of systems with continuous symmetry, Phys. Rev. B 45 (1992), pp. 6989–7001.
  • G.F. Mazenko, Nonequilibrium Statistical Mechanics, Wiley-VCH Verlag, Weinheim, 2008.
  • B. Yurke, A.N. Pargellis, T. Kovacs, and D.A. Huse, Coarsening dynamics of the XY model, Phys. Rev. E 47(1) (1992), pp. 1525–1530.
  • A.J. Bray, A.J. Briant, and D.K. Jervis, Breakdown of scaling in the nonequilibrium critical dynamics of the two-dimensional XY model, Phys. Rev. Lett. 84 (2000), pp. 1503–1506.
  • N. Goldenfeld, Lectures on Phase Transitions and Renormalization Group, Perseus Books, Reading, MA, 1992, Chap. 11.
  • A.K. Tagantsev, L.E. Cross, and J. Fousek, Domains in Ferroic Crystals and Thin Films, Springer, New York, 2010. Chap. 2.
  • V. Dvorak, The origin of the structural phase transition in Gd2(MoO4)3, Phys. Stat. Sol. B 45 (1971), pp. 147–152.
  • V. Dvorak, A thermodynamic theory of gadolinium molybdate, Phys. Stat. Sol. B 46 (1971), pp. 763–772.
  • J. Fousek and C. Konak, Electro-optical properties of ferroelectric Gd2(MoO4)3, Czech J. Phys. B 22 (1972), pp. 995–1006.
  • S. Kojima and T. Nakamura, Electro-optical properties of gadolinium molybdate, Phys. Rev. B 18 (1978), pp. 453–458.
  • E. Sawaguchi and L.E. Cross, Spontaneous polarization of Gd2(MoO4)3, J. Appl. Phys. 44 (1973), pp. 2541–2544.
  • S. Kojima, K. Ohi, and T. Nakamura, Temperature dependence of electrooptic coefficient and spontaneous birefringence of ferroelectric gadolinium molybdate, J. Phys. Soc. Japan 41 (1976), pp. 162–166.
  • R. Bausch, Ginzburg criterion for tricritical points, Z. Physik 254 (1972), pp. 81–88.
  • M.J. Stephen and J.L. McCauley, Feynman graph expansion for tricritical exponents, Phys. Lett. A 44 (1973), pp. 89–90.
  • Y. Yamazaki and M. Suzuki, Critical behavior in tricritical phase transitions, II. Prog. Theor. Phys. 58 (1977), pp. 1367–1376.
  • B. Dorner, J.D. Axe, and G. Shirane, Neutron-scattering ferroeletric phase transformation in Tb2(MoO4)3, Phys. Rev. B 6 (1972), pp. 1950–1963.
  • A.A. Bulbich, V.P. Dmitriev, O.V. Zhelnova, and P.E. Pumpyan, Nucleation at twin boundaries in crystals undergoing phase transitions near singularities in phase diagrams, Sov. Phys. JETP 71 (1990), pp. 619–625.
  • A.K. Tagantsev, K. Vaideeswaran, and S.B. Vakhrushev, and others, The origin of antiferroelectricity in PbZrO3, Nat. Commun. 4 (2013), p. 2229–2236.
  • X.K. Wei, A.K. Tagantsev, A. Kvasov, K. Roleder, C.L. Jia, and N. Setter, Ferroelectric translational antiphase boundaries in nonpolar materials, Nat. Commun. 5:3031 (2014), pp. 1–5.
  • H. Fujishita, Y. Ishikawa, S. Tanaka, A. Ogawaguchi, and S. Katano Crystal structure and order parameters in phase transition of antiferroelectric pbzro3, J. Phys. Soc. Japan. 72 (2003), pp. 1426–1435. (see references therein).
  • P. Tolédano, M. Guennou, and J. Kreisel, Order-parameter symmetries of domain walls in ferroelectrics and ferroelastics, Phys. Rev. B 89 (2014), p. 134104.
  • V.L. Ginzburg and L.P. Pitaevskii, On the theory of superfluidity, Sov. Phys. JETP 7(5) (1958), pp. 858–861.
  • E.M. Lifshitz and L.P. Pitaevskii, Statistical Physics: Part 2, Pergamon, Oxford, 1980. Section 30.
  • F.W. Olver, D.W. Lozier, R.F. Boisvert, and C.W. Clark (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, New York, 2010.
  • I.M. Lifshitz, Kinetics of ordering during second-order phase transitions, Sov. Phys. JEPT 15 (1962), pp. 939–942.
  • A.J. Bray, Random walks in logarithmic and power law potentials, nonuniversal persistence, and vortex dynamics in the two-dimensional XY model, Phys. Rev. E 62 (2000), pp. 103–112.
  • J.D. Axe, B. Dorner, and G. Shirane, Mechanism of the ferroelectric phase transformation in rare-earth molybdates, Phys. Rev. Lett. 26 (1971), pp. 519–523.
  • K. Aizu, Inferred temperature-dependence of electrical, mechanical and optical properties of ferroelectric-ferroelastic Gd2(MoO4)3, J. Phys. Soc. Japan 31 (1971), pp. 802–811.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.