611
Views
6
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Interfacial free energy anisotropy driven faceting of precipitates

ORCID Icon, , &
Pages 2705-2735 | Received 06 Apr 2017, Accepted 23 Jun 2017, Published online: 06 Jul 2017

References

  • M. Fährmann, P. Fratzl, O. Paris, E. Fährmann, and W.C. Johnson, Influence of coherency stress on microstructural evolution in model Ni--Al--Mo alloys, Acta Metall. Mater. 43 (1995), pp. 1007–1022.
  • T.B. Massalski, W.A. Soffa, and D.E. Laughlin, The nature and role of incoherent interphase interfaces in diffusional solid--solid phase transformations, Metall. Mater. Trans. A 37 (2006), pp. 825–831.
  • W.Z. Zhang, X.F. Gu, and F.Z. Dai, Faceted interfaces: A key feature to quantitative understanding of transformation morphology, npj Comput. Mater. 2 (2016), p. 16021.
  • M.K. Santala, V. Radmilovic, R. Giulian, M.C. Ridgway, R. Gronsky, and A.M. Glaeser, The orientation and morphology of platinum precipitates in sapphire, Acta Mater. 59 (2011), pp. 4761–4774.
  • M. Backhaus-Ricoult, Growth and equilibrium morphology of metal precipitates formed inside an oxide matrix, Inter. Sci. 4 (1997), pp. 285–302.
  • A. van de Walle, Q. Hong, L. Milijacic, C. Balaji Gopal, S. Demers, G. Pomrehn, A. Kowalski, and P. Tiwary, Ab initio calculation of anisotropic interfacial excess free energies, Phys. Rev. B 89 (2014), p. 184101.
  • G.H. Deaf, The coarsening process of Ge precipitates in an Al-4 wt.% Ge alloy, Phys. B: Cond. Matter. 348 (2004), pp. 115–120.
  • J. He, I.D. Blum, H.Q. Wang, S.N. Giard, J. Doak, L.D. Zhao, J.C. Zheng, G. Casillas, C. Wolverton, M. Jose-Yacaman, D.N. Seidman, M.G. Kanatzidis, and V.P. Dravid, Morphology control of nanostructures; Na-doped PbTe--PbS system, Nanoletters 12 (2012), pp. 5979–5984.
  • E.A. Marquis and D.N. Seidman, Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys, Acta Mater. 49 (2001), pp. 1909–1919.
  • W. Rheinheimer, M. Bäurer, H. Chien, G.S. Rohrer, C.A. Handwerker, J.E. Blendell, and M.J. Hoffmann, The equilibrium crystal shape of strontium titanate and its relationship to the grain boundary plane distribution, Acta Mater. 82 (2015), pp. 32–40.
  • G.H. Kim and C.V. Thompson, Effect of surface energy anisotropy on Rayleigh-like solid-state dewetting and nanowire stability, Acta Mater. 84 (2015), pp. 190–201.
  • W. Jiang, Y. Wang, Q. Zhao, D.J. Srolovitz, and W. Bao, Solid-state dewetting and island morphologies in strongly anisotropic materials, Scr. Mater. 115 (2016), pp. 123–127.
  • L.Q. Chen, Phase-field models for microstructure evolution, Ann. Rev. Mat. Res. 32 (2002), pp. 113–140.
  • W.J. Boettinger, J.A. Warren, C. Beckermann, and A. Karma, Phase-field simulation of solidification, Ann. Rev. Mat. Res. 32 (2002), pp. 163–194.
  • I. Steinbach, Phase-field models in materials science, Mod. Sim. Mat. Sci. Engg. 17 (2009), pp. 073001–31pp.
  • K. Thornton, J. Ågren, and P.W. Voorhees, Modelling the evolution of phase boundaries in solids at the meso- and nano-scales, Acta Mater. 51 (2003), pp. 5675–5710.
  • N. Moelans, B. Blanpain, and P. Wollants, An introduction to phase-field modeling of microstructure evolution, Comp. Coup. Phase Dia. Thermochem. 32 (2008), pp. 268–294.
  • J.S. Langer, Models of pattern formation in first-order phase transitions, in Directions in Condensed Matter Physics: Memorial Volume in Honor of Shang-Keng Ma, G. Grinstein and G. Mazenko, eds., World Scientific, Singapore, 1986.
  • A.A. Wheeler, B.T. Murray, and R.J. Schaefer, Computation of dendrites using a phase field model, Physica D: Nonlin. Phenom. 66 (1993), pp. 243–262.
  • J.B. McFadden, A.A. Wheeler, R.J. Braun, S.R. Coriell, and R.F. Sekerka, Phase-field models for anisotropic interfaces, Phys. Rev. E 48 (1993), pp. 2016–2024.
  • A.A. Wheeler and G.B. McFadden, A x-vector formulation of anisotropic phase-field models: 3D asymptiotics, Eur. J. App. Math. 7 (1996), pp. 367–381.
  • R.J. Braun, J.W. Cahn, G.B. McFadden, and A.A. Wheeler Anisotropy of interfaces in an ordered alloy: A multiple-order-parameter model, Phil. Trans.: Math., Phys. Engg. Sci. 355 (1997), pp. 1787–1833.
  • R.J. Braun, J.W. Cahn, G.B. McFadden, H.E. Rushmeier, and A.A. Wheeler, Theory of anisotropic growth rates in the ordering of an f.c.c. alloy, Acta Mater. 46 (1998), pp. 1–12.
  • A. Karma and W.J. Rappel, Quantitative phase-field modeling of dendritic growth in two and three dimensions, Phys. Rev. E 57 (1998), pp. 4323–4349.
  • B. Nestler and A.A. Wheeler, Anisotropic multi-phase-field model: Interfaces and junctions, Phys. Rev. E 57 (1998), pp. 2602–2609.
  • A.A. Wheeler, Cahn--Hoffman ξ-vector and its relation to diffuse interface models of solidification, J. Stat. Phys. 95 (1999), pp. 1245–1280.
  • J.W. Cahn, S.C. Han, and G.B. McFadden, Anisotropy of interfaces in an ordered hcp binary alloy, J. Stat. Phys. 95 (1999), pp. 1337–1360.
  • A. Kazaryan, Y. Wang, S.A. Dregia, and B.R. Patton, Generalized phase-field model for computer simulation of grain growth in anisotropic systems, Phys. Rev. B 61 (2000), pp. 14275–14278.
  • T.A. Abinandanan and F. Haider, An extended Cahn--Hilliard model for interfaces with cubic anisotropy, Philos. Mag. A 81 (2001), pp. 2457–2479.
  • J.J. Eggleston, G.B. McFadden, and P.W. Voorhees, A phase-field model for highly anisotropic interfacial energy, Physica D: Nonlin. Phenom. 150 (2001), pp. 91–103.
  • J.M. Debierre, A. Karma, F. Celestini, and R. Guérin, Phase-field approach for faceted solidification, Phys. Rev. E 68 (2003), pp. 416041–4160413.
  • I. Loginova, J. Ågren, and G. Amberg, On the formation of Widmanstätten ferrite in binary Fe--C -- Phase-field approach, Acta Mater. 52 (2004), pp. 4055–4063.
  • S.G. Kim and W.T. Kim, Phase field modeling of dendritic growth with high anisotropy, J. Cryst. Growth 275 (2005), pp. e355–e360.
  • A.A. Wheeler, Phase-field theory of edges in an anisotropic crystal, Proc. Roy. Soc. A: Math. Phys. Engg. Sci. 462 (2006), pp. 3363–3384.
  • T. Haxhimali, A. Karma, G. Gonzales, and M. Rappaz, Orientation selection in denditic evolution, Nat. Mater. 5 (2006), pp. 660–664.
  • N. Moelans, B. Blanpain, and P. Wollants, Quantitative phase-field approach for simulating grain growth in anisotropic systems with arbitrary inclination and misorientation dependence, Phys. Rev. Lett. 101 (2008), pp. 025502–1–025502–4.
  • R.S. Qin and H.K.D.H. Bhadeshia, Phase-field model study of the effect of interface anisotropy on the crystal morphological evolution of cubic metals, Acta Mater. 57 (2009), pp. 2210–2216.
  • R.S. Qin and H.K.D.H. Bhadeshia, Phase-field model study of the crystal morphological evolution of hcp metals, Acta Mater. 57 (2009), pp. 3382–3390.
  • I.M. McKenna, M.P. Gururajan, and P.W. Voorhees, Phase field modeling of grain growth: Effect of boundary thickness, triple junctions, misorientation, and anisotropy, J. Mat. Sci. 44 (2009), pp. 2206–2217.
  • S. Torabi, J. Lowengrub, A. Voigt, and S. Wise A new phase-field model for strongly anisotropic systems, Proc. Roy. Soc. A: Math. Phys. Engg. Sci. 465 (2009), pp. 1337–1359.
  • S. Torabi and J. Lowengrub, Simulating interfacial anisotropy in thin-film growth using an extended Cahn--Hilliard model, Phys. Rev. E 85 (2012), p. 041603.
  • E.S. Nani and M.P. Gururajan, On the incorporation of cubic and hexagonal interfacial energy anisotropy in phase field models using higher order tensor terms, Philos. Mag. 94 (2014), pp. 3331–3352.
  • J. Choi, S.K. Park, H.Y. Hwang, and J.Y. Huh, A comparative study of dendritic growth by using the extended Cahn--Hilliard model and the conventional phase-field model, Acta Mater. 84 (2015), pp. 55–64.
  • W. Liu, N. Wang, Y. Ji, P. Song, C. Zhang, Z. Yang, and L. Chen, Effects of surface energy anisotropy on void evolution during irradiation: A phase-field model, J. Nuclear Mater. 479 (2016), pp. 316–322.
  • I.H. Shames and C.L. Dym, Energy and Finite Element Methods in Structural Mechanics, New Age International, New Delhi, 1995.
  • L.Q. Chen and J. Shen, Applications of semi-implicit Fourier-spectral method to phase field equations, Comput. Phys. Commun. 108 (1998), pp. 147–158.
  • J.W. Cahn and J.E. Hilliard, Free energy of a non-uniform system I. Interfacial free energy, J. Chem. Phys. 28 (1958), pp. 258–267.
  • D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys, Chapman & Hall, London, 1996.
  • A.R. Roosen, R.P. McCormack, and W.C. Carter, Wulffman: A tool for the calculation and display of crystal shapes, Comput. Mat. Sci. 11 (1998), pp. 16–26.
  • A. Roy and M.P. Gururajan, 3D growth Kinetics of precipitates with anisotropic interfacial free energy: A phase-field study, Trans. Ind. Inst. Met. 68 (2015), pp. 177–183.
  • D.W. Hoffman and J.W. Cahn, A vector thermodynamics for anisotropic surfaces. I. Fundamentals and application to plane surface junctions, Surf. Sci. 31 (1972), pp. 368–388.
  • A. Karma and W.J. Rappel, Numerical simulation of three-dimensional dendritic growth, Phys. Rev. Lett. 77 (1996), pp. 4050–4053.
  • A. Braun, Quantitative model for anisotropy and reorientation thickness of the magnetic moment in thin epitaxially strained metal films, Physica B: Cond. Mat. 373 (2006), pp. 346–354.
  • M.D.Graef and M.E.McHenry, Structure of Materials: An Introduction to Crystallography, Diffraction, and Symmetry, Cambridge University Press, Cambridge, 2007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.