895
Views
4
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Large spontaneous Hall effects in chiral topological magnets

, , , &
Pages 2815-2827 | Received 27 Sep 2016, Accepted 13 Jun 2017, Published online: 01 Aug 2017

References

  • M.Z. Hasan and C.L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82 (2010), p. 3045.
  • L. Fu, C.L. Kane, and E.J. Mele, Topological insulators in three dimensions, Phys. Rev. Lett. 98 (2007), p. 106803.
  • J.E. Moore and L. Balents, Topological invariants of time-reversal-invariant band structures, Phys. Rev. B 75 (2007), p. 121306.
  • Y. Ando, Topological insulator materials, J. Phys. Soc. Jpn. 82 (2013), p. 102001.
  • Z. Liu, B. Zhou, Y. Zhang, Z. Wang, H. Weng, D. Prabhakaran, S.K. Mo, Z. Shen, Z. Fang, X. Dai, Z. Hussain, and Y.L. Chen, Discovery of a three-dimensional topological Dirac semimetal, Na3Bi, Science 343 (2014), pp. 864–867.
  • M. Neupane, S.Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.R. Chang, H.T. Jeng, and H. Lin, Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2, Nat. Commun. 5 (2014).
  • S.Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.C. Lee, S.M. Huang, H. Zheng, J. Ma, D.S. Sanchez, B. Wang, A. Bansil, F. Chou, P.P. Shibayev, H. Lin, S. Jia, and M.Z. Hasan, Discovery of a Weyl fermion semimetal and topological Fermi arcs 349 (2015), pp. 613–617.
  • B.Q. Lv, H.M. Weng, B.B. Fu, X.P. Wang, H. Miao, J. Ma, P. Richard, X.C. Huang, L.X. Zhao, G.F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, Experimental discovery of Weyl semimetal TaAs, Phys. Rev. X 5 (2015), p. 031013.
  • B.J. Kim, H. Jin, S.J. Moon, J.Y. Kim, B.G. Park, C.S. Leem, J. Yu, T.W. Noh, C. Kim, S.J. Oh, J.H. Park, V. Durairaj, G. Cao, and E. Rotenberg, , Novel Jeff= 1/2 Mott state induced by relativistic spin-orbit coupling in Sr2IrO4, Phys. Rev. Lett. 101 (2008), p. 076402.
  • Y. Machida, S. Nakatsuji, S. Onoda, T. Tayama, and T. Sakakibara, Time-reversal symmetry breaking and spontaneous Hall effect without magnetic dipole order, Nature 463 (2010), pp. 210–213.
  • W. Witczak-Krempa and Y.B. Kim, Topological and magnetic phases of interacting electrons in the pyrochlore iridates, Phys. Rev. B 85 (2012), p. 045124.
  • D. Pesin and L. Balents, Mott physics and band topology in materials with strong spin--orbit interaction, Nature Phys. 6 (2010), pp. 376–381.
  • W. Witczak-Krempa, G. Chen, Y.B. Kim, and L. Balents, Correlated quantum phenomena in the strong spin--orbit regime, Annu. Rev. Condensed Matter Phys. 5 (2013), pp. 57–82.
  • E.G. Moon, C. Xu, Y.B. Kim, and L. Balents, Non-fermi-liquid and topological states with strong spin--orbit coupling, Phys. Rev. Lett. 111 (2013), p. 206401.
  • X. Wan, A.M. Turner, A. Vishwanath, and S.Y. Savrasov, Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B 83 (2011), p. 205101.
  • K.Y. Yang, Y.M. Lu, and Y. Ran, Quantum Hall effects in a Weyl semimetal: Possible application in pyrochlore iridates, Phys. Rev. B 84 (2011), p. 075129.
  • R. Shindou and N. Nagaosa, Orbital ferromagnetism and anomalous Hall effect in antiferromagnets on the distorted fcc lattice, Phys. Rev. Lett. 87 (2001), p. 116801.
  • G. Metalidis and P. Bruno, Topological Hall effect studied in simple models, Phys. Rev. B 74 (2006), p. 045327.
  • I. Martin and C.D. Batista, Itinerant electron-driven chiral magnetic ordering and spontaneous quantum Hall effect in triangular lattice models, Phys. Rev. Lett. 101 (2008), p. 156402.
  • H. Ishizuka and Y. Motome, Quantum anomalous Hall effect in kagome ice, Phys. Rev. B 87 (2013), p. 081105.
  • H. Chen, Q. Niu, and A.H. MacDonald, Anomalous Hall effect arising from noncollinear antiferromagnetism, Phys. Rev. Lett. 112 (2014), p. 017205.
  • L. Balicas, S. Nakatsuji, Y. Machida, and S. Onoda, Anisotropic hysteretic Hall effect and magnetic control of chiral domains in the chiral spin states of Pr2Ir2O7, Phys. Rev. Lett. 106 (2011), p. 217204.
  • Y. Tokiwa, J.J. Ishikawa, S. Nakatsuji, and P. Gegenwart, Quantum criticality in a metallic spin liquid, Nat. Mat. 13 (2014), pp. 356–359.
  • S. Nakatsuji, N. Kiyohara, and T. Higo, Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature, Nature 527 (2015), pp. 212–215.
  • N. Kiyohara, T. Tomita, and S. Nakatsuji, Giant anomalous Hall effect in the chiral antiferromagnet Mn3Ge, Phys. Rev. Appl. 5 (2016), p. 064009.
  • A.K. Nayak, J.E. Fischer, Y. Sun, B. Yan, J. Karel, A.C. Komarek, C. Shekhar, N. Kumar, W. Schnelle, J. Kübler, C. Felser, and S.S.P. Parkin, Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge, Sci. Adv. 2 (2016), p. e1501870.
  • C.L. Chien and C.R. Westgate, The Hall Effect and Its Applications, Plenum, New York, 1980.
  • N. Nagaosa, J. Sinova, S. Onoda, A.H. MacDonald, and N.P. Ong, Anomalous Hall effect, Rev. Mod. Phys. 82 (2010), pp. 1539–1592.
  • E.H. Hall, On the “Rotational coefficient” in Nickel and Cobalt, Proc. Phys. Soc. Lond. 4 (1880), pp. 325–342.
  • J. Ye, Y.B. Kim, A.J. Millis, B.I. Shraiman, P. Majumdar, and Z. Tesanovic, Berry phase theory of the anomalous Hall effect: Application to colossal magnetoresistance manganites, Phys. Rev. Lett. 83 (1999), p. 3737.
  • K. Ohgushi, S. Murakami, and N. Nagaosa, Spin anisotropy and quantum Hall effect in the kagome lattice: Chiral spin statebased on a ferromagnet, Phys. Rev. B 62 (2000), p. R6065.
  • G. Tatara and H. Kawamura, Chirality-driven anomalous Hall effect in weak coupling regime, J. Phys. Soc. Jpn. 71 (2002), p. 2613.
  • M.T. Suzuki, T. Koretsune, M. Ochi, and R. Arita, Cluster multipole theory for anomalous Hall effect in antiferromagnets, Phys. Rev. B. 95 (2017), pp. 094406.
  • S. Nakatsuji, Y. Machida, Y. Maeno, T. Tayama, T. Sakakibara, J. van Duijn, L. Balicas, J.N. Millican, R.T. Macaluso, and J.Y. Chan, Metallic spin-liquid behavior of the geometrically frustrated kondo lattice Pr2Ir2O7, Phys. Rev. Lett. 96 (2006), p. 087204.
  • Y. Machida, S. Nakatsuji, Y. Maeno, T. Tayama, T. Sakakibara, and S. Onoda, Unconventional anomalous Hall effect enhanced by a noncoplanar spin texture in the frustrated kondo lattice Pr2Ir2O7, Phys. Rev. Lett. 98 (2007), p. 057203.
  • T. Kondo, M. Nakayama, R. Chen, J. Ishikawa, E.G. Moon, T. Yamamoto, Y. Ota, W. Malaeb, H. Kanai, Y. Nakashima, Y. Ishida, R. Yoshida, H. Yamamoto, M. Matsunami, S. Kimura, N. Inami, K. Ono, H. Kumigashira, S. Nakatsuji, L. Balents, and S. Shin, Quadratic fermi node in a 3D strongly correlated semimetal, Nat. Commun. 6 (2015), p. 10042.
  • D. Yanagishima and Y. Maeno, Metal-nonmetal changeover in pyrochlore iridates, J. Phys. Soc. Jpn. 70 (2001), p. 2880.
  • K. Matsuhira, M. Wakeshima, R. Nakanishi, T. Yamada, A. Nakamura, W. Kawano, S. Takagi, and Y. Hinatsu, Metal-insulator transition in pyrochlore iridates Ln2Ir2O7 (Ln= Nd, Sm, and Eu), J. Phys. Soc. Jpn. 76 (2007), p. 3706.
  • D. Uematsu, H. Sagayama, T.h. Arima, J.J. Ishikawa, S. Nakatsuji, H. Takagi, M. Yoshida, J. Mizuki, and K. Ishii, Large trigonal-field effect on spin--orbit coupled states in a pyrochlore iridate, Phys. Rev. B 92 (2015), p. 094405.
  • C. Brüne, C.X. Liu, E.G. Novik, E.M. Hankiewicz, H. Buhmann, Y.L. Chen, X.L. Qi, Z.X. Shen, S.C. Zhang, and L.W. Molenkamp, Quantum Hall effect from the topological surface states of strained bulk HgTe, Phys. Rev. Lett. 106 (2011), p. 126803.
  • S. Zaheer, S.M. Young, D. Cellucci, J.C.Y. Teo, C.L. Kane, E.J. Mele, and A.M. Rappe, Spin texture on the Fermi surface of tensile-strained HgTe, Phys. Rev. B 87 (2013), p. 045202.
  • K. Kimura, S. Nakatsuji, J.J. Wen, C. Broholm, M.B. Stone, E. Nishibori, and H. Sawa, Quadratic Fermi node in a 3D strongly correlated semimetal, Nat. Commun. 4 (2013), p. 2914.
  • K. Ueda, J. Fujioka, Y. Takahashi, T. Suzuki, S. Ishiwata, Y. Taguchi, and Y. Tokura, Variation of charge dynamics in the course of metal-insulator transition for pyrochlore-type Nd2Ir2O7, Phys. Rev. Lett. 109 (2012), p. 136402.
  • Z. Tian, Y. Kohama, T. Tomita, H. Ishizuka, T.H. Hsieh, J.J. Ishikawa, K. Kindo, L. Balents, and S. Nakatsuji, Field-induced quantum metal-insulator transition in the pyrochlore iridate Nd2Ir2O7, Nat. Phys. 12 (2016), pp. 134–138.
  • K. Ueda, J. Fujioka, B.J. Yang, J. Shiogai, A. Tsukazaki, S. Nakamura, S. Awaji, N. Nagaosa, and Y. Tokura, Magnetic field-induced insulator-semimetal transition in a pyrochlore Nd2Ir2O7, Phys. Rev. Lett. 115 (2015), pp. 056402
  • M. Nakayama, T. Kondo, Z. Tian, J.J. Ishikawa, M. Halim, C. Bareille, W. Malaeb, K. Kuroda, T. Tomita, S. Ideta, K. Tanaka, M. Matsunami, S. Kimura, N. Inami, K. Ono, H. Kumigashira, L. Balents, S. Nakatsuji, and S. Shin, Slater to mott crossover in the metal to insulator transition of Nd2Ir2O7, Phys. Rev. Lett. 117 (2016), p. 056403.
  • T. Nagamiya, S. Tomiyoshi, and Y. Yamaguchi, Triangular spin configuration and weak ferromagnetism of Mn3Sn and Mn3Ge, Solid State Commun. 42 (1982), pp. 385–388.
  • S. Tomiyoshi and Y. Yamaguchi, Polarized neutron diffraction study of the spin structure of Mn3Sn, J. Phys. Soc. Jpn. 51 (1982), pp. 803–810.
  • S. Tomiyoshi, Y. Yamaguchi, and T. Nagamiya, Triangular spin configuration and weak ferromagnetism of Mn3Ge, J. Magn. Magn. Mater. 31–34, Part 2 (1983), pp. 629–630.
  • J. Kübler and C. Felser, Non-collinear antiferromagnets and the anomalous Hall effect, Europhys. Lett. 108 (2014), p. 67001.
  • C.M. Hurd, The Hall Effect in Metals and Alloys, Plenum, New York, 1972.
  • A.A. Burkov and L. Balents, Weyl semimetal in a topological insulator multilayer, Phys. Rev. Lett. 107 (2011), p. 127205.
  • H. Yang, Y. Sun, Y. Zhang, W.J. Shi, S.S.P. Parkin, and B. Yan Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn, New J. Phys.. 19 (2017), pp. 015008.
  • H.B. Nielsen and M. Ninomiya, The Adler--Bell--Jackiw anomaly and Weyl fermions in a crystal, Phys. Lett. B. 130 (1983), pp. 389–396.
  • D.T. Son and B.Z. Spivak, Chiral anomaly and classical negative magnetoresistance of Weyl metals, Phys. Rev. B. 88 (2013), pp. 104412.
  • J. Xiong, S.K. Kushwaha, T. Liang, J.W. Krizan, M. Hirschberger, W. Wang, R.J. Cava, and N.P. Ong, , Evidence for the chiral anomaly in the Dirac semimetal Na3Bi, Science. 350 (2015), pp. 413.
  • C.L. Zhang, S.Y. Xu, I. Belopolski, Z. Yuan, Z. Lin, B. Tong, G. Bian, N. Alidoust, C.C. Lee, S.M. Huang, T.R. Chang, G. Chang, C.H. Hsu, H.T. Jeng, M. Neupane, D.S. Sanchez, H. Zheng, J. Wang, H. Lin, C. Zhang, H.Z. Lu, S.Q. Shen, T. Neupert, M. Zahid Hasan, and S. Jia, Signatures of the Adler--Bell--Jackiw chiral anomaly in a Weyl fermion semimetal, Nat. Commun. 7 (2016), pp. 10735.
  • M. Hirschberger, S. Kushwaha, Z. Wang, Q. Gibson, C.A. Belvin, B. Bernevig, R. Cava, and N. Ong, The chiral anomaly and thermopower of Weyl fermions in the half-Heusler GdPtBi, Nat. Mater. 15 (2016), pp. 1161–1165.
  • H. Fukuyama, Anomalous orbital magnetism and Hall effect of massless fermions in two dimension, J. Phys. Soc. Jpn. 76 (2007), p. 043711.
  • D. Xiao, M.C. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys. 82 (2010), pp. 1959–2007.
  • A.S. Núñez, R.A. Duine, P. Haney, and A.H. MacDonald, Theory of spin torques and giant magnetoresistance in antiferromagnetic metals, Phys. Rev. B 73 (2006), p. 214426.
  • A.B. Shick, S. Khmelevskyi, O.N. Mryasov, J. Wunderlich, and T. Jungwirth, Spin--orbit coupling induced anisotropy effects in bimetallic antiferromagnets: A route towards antiferromagnetic spintronics, Phys. Rev. B 81 (2010), p. 212409.
  • A.H. MacDonald and M. Tsoi, Antiferromagnetic metal spintronics, Phil. Trans. R. Soc. A 369 (2011), pp. 3098–3114.
  • B.G. Park, J. Wunderlich, X. Marti, V. Holy, Y. Kurosaki, M. Yamada, H. Yamamoto, A. Nishide, J. Hayakawa, H. Takahashi, A.B. Shick, and T. Jungwirth, A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction, Nat. Mater. 10 (2011), pp. 347–351.
  • X. Marti, I. Fina, C. Frontera, J. Liu, P. Wadley, Q. He, R.J. Paull, J.D. Clarkson, J. Kudrnovský, I. Turek, J. Kuneš, D. Yi, J.H. Chu, C.T. Nelson, L. You, E. Arenholz, S. Salahuddin, J. Fontcuberta, T. Jungwirth, and R. Ramesh, Room-temperature antiferromagnetic memory resistor, Nat. Mater. 13 (2014), pp. 367–374.
  • E.V. Gomonay and V.M. Loktev, Spintronics of antiferromagnetic systems, Low Temp. Phys. 40 (2014), pp. 17–35.
  • T. Jungwirth, X. Marti, P. Wadley, and J. Wunderlich, Antiferromagnetic spintronics, Nat. Nanotechnol. 11 (2016), pp. 231–241.
  • C. Chappert, A. Fert, and F.N. Van Dau, The emergence of spin electronics in data storage, Nat. Mater. 6 (2007), pp. 813–823.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.