482
Views
38
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Cooling rate dependence and local structure in aluminum monatomic metallic glass

, , &
Pages 2753-2771 | Received 28 Feb 2017, Accepted 21 Jun 2017, Published online: 13 Jul 2017

References

  • A. Inoue, High strength bulk amorphous alloys with low critical cooling rates (Overview), Mater T. 36 (1995), pp. 866–875.
  • A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater. 48 (2000), pp. 279–306.10.1016/S1359-6454(99)00300-6
  • M.H. Bhat, V. Molinero, E. Soignard, V.C. Solomon, S. Sastry, J.L. Yarger, and C.A. Angell, Vitrification of a monatomic metallic liquid, Nature 448 (2007), pp. 787–790.10.1038/nature06044
  • L. Zhong, J. Wang, H. Sheng, Z. Zhang, and S.X. Mao, Formation of monatomic metallic glasses through ultrafast liquid quenching, Nature 512 (2014), pp. 177–180.10.1038/nature13617
  • J.D. Bernal and J. Mason, Packing of spheres: Co-ordination of randomly packed spheres, Nature 188 (1960), pp. 910–911.10.1038/188910a0
  • C.C. Wang and C.H. Wong, Structural properties of ZrxCu90-xAl10 metallic glasses investigated by molecular dynamics simulations, J. Alloys Compd. 510 (2011), pp. 107–113.
  • S. Plimpton, LAMMPS (Large-Scale Atomic/Molecular Massively Parallel Simulator). Software Available at https://lammps.sandia.gov/.
  • M.S. Daw, S.M. Foiles, and M.I. Baskes, The embedded-atom method – A review of theory and applications, Mater. Sci. Rep. 9 (1993), pp. 251–310.10.1016/0920-2307(93)90001-U
  • L.G. Zhou and H. Huang, Response embedded atom method of interatomic potentials, Phys. Rev. B. 87 (2013), p. 045431.10.1103/PhysRevB.87.045431
  • H.W. Sheng, M.J. Kramer, A. Cadien, T. Fujita, and M.W. Chen, Highly optimized embedded-atom-method potentials for fourteen FCC metals, Phys. Rev. B. 83 (2011), p. 134118.10.1103/PhysRevB.83.134118
  • A. Hasnaoui, O. Politano, J.M. Salazar, G. Aral, R.K. Kalia, A. Nakano, and P. Vashishta, Molecular dynamics simulations of the nano-scale room-temperature oxidation of aluminum single crystals, Surf. Sci. 579 (2005), pp. 47–57.10.1016/j.susc.2005.01.043
  • A. Hasnaoui, O. Politano, J.M. Salazar, and G. Aral, Nanoscale oxide growth on Al single crystals at low temperatures: Variable charge molecular, Phys. Rev. B. 73 (2006), p. 035427.10.1103/PhysRevB.73.035427
  • D. Frenkel and B. Smit, Understanding Molecular Simulation from algorithms to applicatins, Academic press, San Diego, CA, 2002.
  • R.R. Zope and Y. Mishin, Interatomic potentials for atomistic simulations of the Ti–Al system, Phys. Rev. B. 68 (2003), p. 24102.10.1103/PhysRevB.68.024102
  • Y. Mishin, Atomistic modeling of the γ and γ′-phases of the Ni–Al system, Acta Mater. 52 (2004), pp. 1451–1467.10.1016/j.actamat.2003.11.026
  • A. Hassani, A. Makan, K. Sbiaai, A. Tabyaoui, and A. Hasnaoui, Molecular dynamics study of growth and interface structure during aluminum deposition on Ni(1 0 0) substrate, Appl. Surf. Sci. 349 (2015), pp. 785–791.10.1016/j.apsusc.2015.05.076
  • E. Elkoraychy, M. Mazroui, R. Ferrando, and Y. Boughaleb, Jump diffusion in the strong-collision model on a two-dimensional triangular lattice, Chem. Phys. Lett. 608 (2014), pp. 360–365.10.1016/j.cplett.2014.06.023
  • I. Matrane, E. Elkoraychy, K. Sbiaai, M. Mazroui, and Y. Boughaleb, Numerical study of self- and heterodiffusion on clean unreconstructed and missing-row reconstructed Pt(1 1 0) surfaces, Phys. Status Solidi B. 253 (2016), pp. 875–882.10.1002/pssb.201552672
  • Z.D. Sha, Y.P. Feng, and Y. Li, Statistical composition-structure-property correlation and glass-forming ability based on the full icosahedra in Cu–Zr metallic glasses, Appl. Phys. Lett. 96 (2010), pp. 2010–2013.
  • H.L. Peng, M.Z. Li, W.H. Wang, C. Wang, and K.M. Ho, Effect of local structures and atomic packing on glass forming ability in CuxZr100−x metallic glasses, Appl. Phys. Lett. 96 (2010), p. 021901.10.1063/1.3282800
  • S. Wu, M.J. Kramer, X.W. Fang, S.Y. Wang, C.Z. Wang, K.M. Ho, Z.J. Ding, and L.Y. Chena, Icosahedral short-range order in amorphous Cu80Si20 by ab initio molecular dynamics simulation study, Intermetallics 30 (2012), pp. 122–126.10.1016/j.intermet.2012.03.018
  • J. Ding, Y.Q. Cheng, and E. Ma, Full icosahedra dominate local order in Cu64Zr34 metallic glass and supercooled liquid, Acta Mater. 69 (2014), pp. 343–354.10.1016/j.actamat.2014.02.005
  • Y. Shibuta and T. Suzuki, A molecular dynamics study of cooling rate during solidification of metal nanoparticles, Chem. Phys. Lett. 502 (2011), pp. 82–86.10.1016/j.cplett.2010.12.020
  • A. Stukowski, Structure identification methods for atomistic simulations of crystalline materials, Model. Simul. Mater. Sci. Eng. 20 (2012), p. 045021.10.1088/0965-0393/20/4/045021
  • R. Liu, H. Liu, Z. Tian, L. L. Zhou, and Q. Y. Zhou, Formation and evolution characteristics of nano-clusters (for large-scale systems of 106 of liquid metal atoms), in Molecular Dynamics-Theoretical Developments and Applications in Nanotechnology and Energy, L. Wang, eds., InTech, Rijeka, 2012, pp. 173–200.
  • W.K. Luo, H.W. Sheng, F.M. Alamgir, J.M. Bai, J.H. He, and E. Ma, Icosahedral short-range order in amorphous alloys, Phys. Rev. Lett. 92 (2004), p. 145502.10.1103/PhysRevLett.92.145502
  • D. Jiang, D. Wen, Z. Tian, and R. Liu, Glass formation and cluster evolution in the rapidly solidified monatomic metallic liquid Ta under high pressure, Phys. A. 463 (2016), pp. 174–181.10.1016/j.physa.2016.07.032
  • L. Xie, P. Brault, A.L. Thomann, and L. Bedra, Molecular dynamic simulation of binary ZrxCu100–x metallic glass thin film growth, Appl. Surf. Sci. 274 (2013), pp. 164–170.10.1016/j.apsusc.2013.03.004
  • M. Tahiri, S. Trady, A. Hasnaoui, M. Mazroui, K. Saadouni, and K. Sbiaai, Structural properties of Al and TiAl3 metallic glasses – An embedded atom method study, Mod. Phys. Lett. B 30 (2016), p. 1650176.
  • S. Trady, M. Mazroui, A. Hasnaoui, and K. Saadouni, Molecular dynamics study of atomic-level structure in monatomic metallic glass, J. Non. Cryst. Solids. 443 (2016), pp. 136–142.10.1016/j.jnoncrysol.2016.04.004
  • Z.Y. Hou, L.X. Liu, R.S. Liu, Z.A. Tian, and J.G. Wang, Short-range and medium-range order in rapidly quenched Al50Mg50 alloy, J. Non. Cryst. Solids. 357 (2011), pp. 1430–1436.10.1016/j.jnoncrysol.2010.11.014
  • E. Ma, Alloys created between immiscible elements, Prog. Mater. Sci. 50 (2005), pp. 413–509.10.1016/j.pmatsci.2004.07.001
  • A. Pasturel and N. Jakse, Ab initio molecular dynamics to designing structural and dynamic properties in metallic glass-forming alloys, Comput. Mater. Sci. 49 (2010), pp. S210–S213.10.1016/j.commatsci.2010.01.015
  • A. Sicco and M. Rappaz, Icosahedral quasicrystal-enhanced nucleation of the fcc phase in liquid gold alloys, Acta Mater. 70 (2014), pp. 240–248.
  • Z. Hou, Z. Tian, R. Liu, K. Dong, and A. Yu, Formation mechanism of bulk nanocrystalline aluminium with multiply twinned grains by liquid quenching: A molecular dynamics simulation study, Comput. Mater. Sci. 99 (2015), pp. 256–261.10.1016/j.commatsci.2014.12.037
  • Y. Shibuta, S. Sakane, T. Takaki, and M. Ohno, Submicrometer-scale molecular dynamics simulation of nucleation and solidi fi cation from undercooled melt: Linkage between empirical interpretation and atomistic nature, Acta Mater. 105 (2016), pp. 328–337.10.1016/j.actamat.2015.12.033
  • Y.Q. Cheng and E. Ma, Atomic-level structure and structure-property relationship in metallic glasses, Prog. Mater. Sci. 56 (2011), pp. 379–473.10.1016/j.pmatsci.2010.12.002
  • D. Sopu, Molecular dynamics simulations of metallic nanoglasses, Ph.D. diss., The Darmstadt University of Technology, 2011.
  • J. Hwang, Nanometer scale atomic structure of zirconium based bulk, Ph.D. diss., The University of Wisconsin-Madiscon, 2011.
  • H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, and E. Ma, Atomic packing and short-to-medium-range order in metallic glasses, Nature 439 (2006), pp. 419–425.10.1038/nature04421
  • Y.Q. Cheng, E. Ma, and H.W. Sheng, Atomic level structure in multicomponent bulk metallic glass, Phys. Rev. Lett. 102 (2009), p. 245501.10.1103/PhysRevLett.102.245501
  • Y.Q. Cheng, A.J. Cao, H.W. Sheng, and E. Ma, Local order influences initiation of plastic flow in metallic glass: Effects of alloy composition and sample cooling history, Acta Mater. 56 (2008), pp. 5263–5275.10.1016/j.actamat.2008.07.011
  • J.P.K. Doye and D.J. Wales, The structure and stability of atomic liquids: from Clusters to bulk, Science 271 (1996), pp. 484–487.10.1126/science.271.5248.484
  • J.P.K. Doye, D.J. Wales, F.H.M. Zetterling, and M. Dzugutov, The favored cluster structures of model glass formers, J. Chem. Phys. 118 (2003), pp. 2792–2799.10.1063/1.1534831
  • R. Soklaski, Z. Nussinov, Z. Markow, K.F. Kelton, and L. Yang, Connectivity of icosahedral network and a dramatically growing static length scale in Cu–Zr binary metallic glasses, Phys. Rev. B. 87 (2013), p. 184203.10.1103/PhysRevB.87.184203
  • S. Trady, A. Hasnaoui, and M. Mazroui, Atomic packing and medium-range order in Ni3Al metallic glass, preprint (2017) submitted for publication available https://doi.org/10.1016/j.jnoncrysol.2017.04.026
  • S.P. Pan, J.Y. Qin, W.M. Wang, and T.K. Gu, Origin of splitting of the second peak in the pair-distribution function for metallic glasses, Phys. Rev. B. 84 (2011), p. 092201.10.1103/PhysRevB.84.092201
  • Y.C. Liang, R.S. Liu, Y.F. Moa, H.R. Liu, Z.A. Tian, Q.Y. Zhoua, H.T. Zhang, L.L. Zhouc, Z.Y. Houd, and P. Peng, Influence of icosahedral order on the second peak splitting of pair distribution function for Mg70Zn30 metallic glass, J. Alloys Compd. 597 (2014), pp. 269–274.10.1016/j.jallcom.2014.01.052
  • X.J. Liu, Y. Xu, X. Hui, Z.P. Lu, F. Li, G.L. Chen, J. Lu, and C.T. Liu, Metallic liquids and glasses: Atomic order and global packing, Phys. Rev. Lett. 105 (2010), p. 155501.10.1103/PhysRevLett.105.155501
  • X.J. Liu, Y. Xu, Z.P. Lu, X. Hui, G.L. Chen, G.P. Zheng, and C.T. Liu, Atomic packing symmetry in the metallic liquid and glass states, Acta Mater. 59 (2011), pp. 6480–6488.10.1016/j.actamat.2011.07.012
  • Z.W. Wu, M.Z. Li, W.H. Wang, and K.X. Liu, Hidden topological order and its correlation with glass-forming ability in metallic glasses, Nat. Commun. 6 (2015), p. 6035.10.1038/ncomms7035
  • D.Z. Chen, Q. An, W.A. Goddard, and J.R. Greer, Ordering and dimensional crossovers in metallic glasses and liquids, Phys. Rev. B 95 (2017), p. 24103.10.1103/PhysRevB.95.024103
  • D.Z. Chen, C.Y. Shi, Q. An, Q. Zeng, and W.L. Mao, Fractal atomic-level percolation in metallic glasses, science. 349 (2014), pp. 1306–1310.10.1126/science.345.6202.1306-f
  • Y. Yang, J.F. Zeng, A. Volland, J.J. Blandin, S. Gravier, and C.T. Liu, Fractal growth of the dense-packing phase in annealed metallic glass imaged by high-resolution atomic force microscopy, Acta Mater. 60 (2012), pp. 5260–5272.10.1016/j.actamat.2012.06.025

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.