468
Views
24
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Investigation on dislocation-based mechanisms of void growth and coalescence in single crystal and nanotwinned nickels by molecular dynamics simulation

&
Pages 2772-2794 | Received 15 Mar 2017, Accepted 03 Jul 2017, Published online: 13 Jul 2017

References

  • J. Gurland and J. Plateau, Ductile fracture of metallic materials, Trans. ASM 56 (1963), pp. 442–454.
  • H. Hayden and S. Floreen, Observations of localized deformation during ductile fracture, Acta Metall. 17 (1969), pp. 213–224.10.1016/0001-6160(69)90060-1
  • C. Beachem and G. Yoder, Elastic-plastic fracture by homogeneous microvoid coalescence tearing along alternating shear planes, Metall. Trans. 4 (1973), pp. 1145–1153.10.1007/BF02645619
  • J. Clayton and J. Knott, Observations of fibrous fracture modes in a prestrained low-alloy steel, Met. Sci. 10 (1976), pp. 63–71.10.1179/030634576790432083
  • C. Thomson, M. Worswick, A. Pilkey, and D. Lloyd, Void coalescence within periodic clusters of particles, J. Mech. Phys. Solids 51 (2003), pp. 127–146.10.1016/S0022-5096(02)00055-8
  • J. Bandstra and D. Koss, On the influence of void clusters on void growth and coalescence during ductile fracture, Acta Mater. 56 (2008), pp. 4429–4439.10.1016/j.actamat.2008.05.009
  • X. Deng, W. Zhu, Y. Zhang, H. He, and F. Jing, Configuration effect on coalescence of voids in single-crystal copper under shock loading, Comp. Mater. Sci. 50 (2010), pp. 234–238.10.1016/j.commatsci.2010.08.008
  • K. Komori, An ellipsoidal void model for simulating ductile fracture behavior, Mech. Mater. 60 (2013), pp. 36–54.10.1016/j.mechmat.2013.01.002
  • M.J. Nemcko, J. Li, and D.S. Wilkinson, Effects of void band orientation and crystallographic anisotropy on void growth and coalescence, J. Mech. Phys. Solids 95 (2016), pp. 270–283.10.1016/j.jmps.2016.06.003
  • Y. Zhang and Z. Chen, On the effect of stress triaxiality on void coalescence, Int. J. Fracture 143 (2007), pp. 105–112.10.1007/s10704-006-9045-2
  • K.L. Nielsen and V. Tvergaard, Failure by void coalescence in metallic materials containing primary and secondary voids subject to intense shearing, Int. J. Solids. Struct. 48 (2011), pp. 1255–1267.10.1016/j.ijsolstr.2011.01.008
  • W. Wong and T. Guo, On the energetics of tensile and shear void coalescences, J. Mech. Phys. Solids 82 (2015), pp. 259–286.10.1016/j.jmps.2015.05.013
  • A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth: Part I – Yield criteria and flow rules for porous ductile media, J. Eng. Mater. Technol. 99 (1977), pp. 2–15.10.1115/1.3443401
  • F. Scheyvaerts, T. Pardoen, and P. Onck, A new model for void coalescence by internal necking, Int. J. Damage Mech. 19 (2010), pp. 95–126.10.1177/1056789508101918
  • W. Liu, H. Huang, and J. Tang, FEM simulation of void coalescence in FCC crystals, Comp. Mater. Sci. 50 (2010), pp. 411–418.10.1016/j.commatsci.2010.08.033
  • I. Barsoum and J. Faleskog, Micromechanical analysis on the influence of the Lode parameter on void growth and coalescence, Int. J. Solids. Struct. 48 (2011), pp. 925–938.10.1016/j.ijsolstr.2010.11.028
  • F. Scheyvaerts, P. Onck, C. Tekoglu, and T. Pardoen, The growth and coalescence of ellipsoidal voids in plane strain under combined shear and tension, J. Mech. Phys. Solids 59 (2011), pp. 373–397.10.1016/j.jmps.2010.10.003
  • L. Morin, J.-B. Leblond, A.A. Benzerga, and D. Kondo, A unified criterion for the growth and coalescence of microvoids, J. Mech. Phys. Solids 97 (2016), pp. 19–36.10.1016/j.jmps.2016.01.013
  • V. Borodin and P. Vladimirov, Molecular dynamics simulations of quasi-brittle crack development in iron, J. Nucl. Mater. 415 (2011), pp. 320–328.10.1016/j.jnucmat.2011.04.052
  • Y. Tang, E.M. Bringa, and M.A. Meyers, Ductile tensile failure in metals through initiation and growth of nanosized voids, Acta Mater. 60 (2012), pp. 4856–4865.10.1016/j.actamat.2012.05.030
  • S. Xu, Y. Guo, and A. Ngan, A molecular dynamics study on the orientation, size, and dislocation confinement effects on the plastic deformation of Al nanopillars, Int. J. Plasticity 43 (2013), pp. 116–127.10.1016/j.ijplas.2012.11.002
  • C. Cui and H. Beom, Molecular dynamics simulations of edge cracks in copper and aluminum single crystals, Mater. Sci. Eng. A 609 (2014), pp. 102–109.10.1016/j.msea.2014.04.101
  • S. Chandra, N. Kumar, M. Samal, V. Chavan, and R. Patel, Molecular dynamics simulations of crack growth behavior in Al in the presence of vacancies, Comp. Mater. Sci. 117 (2016), pp. 518–526.10.1016/j.commatsci.2016.02.032
  • S. Traiviratana, E.M. Bringa, D.J. Benson, and M.A. Meyers, Void growth in metals: Atomistic calculations, Acta Mater. 56 (2008), pp. 3874–3886.10.1016/j.actamat.2008.03.047
  • K. Zhao, C. Chen, Y. Shen, and T. Lu, Molecular dynamics study on the nano-void growth in face-centered cubic single crystal copper, Comp. Mater. Sci. 46 (2009), pp. 749–754.10.1016/j.commatsci.2009.04.034
  • Y. Tang, E.M. Bringa, B.A. Remington, and M.A. Meyers, Growth and collapse of nanovoids in tantalum monocrystals, Acta Mater. 59 (2011), pp. 1354–1372.10.1016/j.actamat.2010.11.001
  • Y.-L. Li, W.-P. Wu, N.-L. Li, and Y. Qi, Cohesive zone representation of crack and void growth in single crystal nickel via molecular dynamics simulation, Comp. Mater. Sci. 104 (2015), pp. 212–218.10.1016/j.commatsci.2015.04.011
  • Z. Yang, G. Zhang, and J. Zhao, Molecular dynamics simulations of void effect of the copper nanocubes under triaxial tensions, Phys. Lett. A 380 (2016), pp. 917–922.10.1016/j.physleta.2015.12.030
  • Y. Su and S. Xu, On the role of initial void geometry in plastic deformation of metallic thin films: A molecular dynamics study, Mater. Sci. Eng. A 678 (2016), pp. 153–164.10.1016/j.msea.2016.09.091
  • Y. Zhang, S. Jiang, X. Zhu, and D. Sun, Orientation dependence of void growth at triple junction of grain boundaries in nanoscale tricrystal nickel film subjected to uniaxial tensile loading, J. Phys. Chem. Solids 98 (2016), pp. 220–232.10.1016/j.jpcs.2016.07.018
  • Y. Zhang, S. Jiang, X. Zhu, and Y. Zhao, Dislocation mechanism of void growth at twin boundary of nanotwinned nickel based on molecular dynamics simulation, Phys. Lett. A 380 (2016), pp. 2757–2761.10.1016/j.physleta.2016.06.044
  • T. Liu and S. Groh, Atomistic modeling of the crack–void interaction in α-Fe, Mater. Sci. Eng. A 609 (2014), pp. 255–265.10.1016/j.msea.2014.05.005
  • L. Wang, Q. Liu, and S. Shen, Effects of void–crack interaction and void distribution on crack propagation in single crystal silicon, Eng. Fract. Mech. 146 (2015), pp. 56–66.10.1016/j.engfracmech.2015.07.021
  • H.-J. Lee and B.D. Wirth, Molecular dynamics simulation of dislocation–void interactions in BCC Mo, J. Nucl. Mater. 386 (2009), pp. 115–118.10.1016/j.jnucmat.2008.12.084
  • L. Xiong, S. Xu, D.L. McDowell, and Y. Chen, Concurrent atomistic–continuum simulations of dislocation–void interactions in fcc crystals, Int. J. Plasticity 65 (2015), pp. 33–42.10.1016/j.ijplas.2014.08.002
  • T. Tang, S. Kim, and M. Horstemeyer, Molecular dynamics simulations of void growth and coalescence in single crystal magnesium, Acta Mater. 58 (2010), pp. 4742–4759.10.1016/j.actamat.2010.05.011
  • Q. Liu and S. Shen, Interaction of voids and nano-ductility in single crystal silicon, Comp. Mater. Sci. 67 (2013), pp. 123–132.10.1016/j.commatsci.2012.08.039
  • Y. Cui and Z. Chen, Molecular dynamics simulation of the influence of elliptical void interaction on the tensile behavior of aluminum, Comp. Mater. Sci. 108 (2015), pp. 103–113.10.1016/j.commatsci.2015.06.028
  • G. Sainath and B. Choudhary, Molecular dynamics simulation of twin boundary effect on deformation of Cu nanopillars, Phys. Lett. A 379 (2015), pp. 1902–1905.10.1016/j.physleta.2015.05.027
  • N.P. Daphalapurkar and K. Ramesh, Orientation dependence of the nucleation and growth of partial dislocations and possible twinning mechanisms in aluminum, J. Mech. Phys. Solids 60 (2012), pp. 277–294.10.1016/j.jmps.2011.10.009
  • J. Sun, L. Fang, A. Ma, J. Jiang, Y. Han, H. Chen, and J. Han, The fracture behavior of twinned Cu nanowires: A molecular dynamics simulation, Mater. Sci. Eng. A 634 (2015), pp. 86–90.10.1016/j.msea.2015.03.034
  • Q. Liu, L. Deng, and X. Wang, Interactions between prismatic dislocation loop and coherent twin boundary under nanoindentation investigated by molecular dynamics, Mater. Sci. Eng. A 676 (2016), pp. 182–190.10.1016/j.msea.2016.08.075
  • S. Foiles, M. Baskes, and M. Daw, Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys, Phys. Rev. B 33 (1986), p. 7983.10.1103/PhysRevB.33.7983
  • S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1995), pp. 1–19.10.1006/jcph.1995.1039
  • J. Zhang and S. Ghosh, Molecular dynamics based study and characterization of deformation mechanisms near a crack in a crystalline material, J. Mech. Phys. Solids 61 (2013), pp. 1670–1690.10.1016/j.jmps.2013.04.004
  • J. Li, AtomEye: An efficient atomistic configuration viewer, Model. Simul. Mater. Sci. Eng. 11 (2003), pp. 173–177.10.1088/0965-0393/11/2/305
  • H. Tsuzuki, P.S. Branicio, and J.P. Rino, Structural characterization of deformed crystals by analysis of common atomic neighborhood, Comput. Phys. Commun. 177 (2007), pp. 518–523.10.1016/j.cpc.2007.05.018
  • A. Stukowski and K. Albe, Extracting dislocations and non-dislocation crystal defects from atomistic simulation data, Model. Simul. Mater. Sci. Eng. 18 (2010), p. 085001.10.1088/0965-0393/18/8/085001
  • W.F. Hosford, Mechanical Behavior of Materials, Cambridge University Press, New York, 2010.
  • V. Lubarda, M. Schneider, D. Kalantar, B. Remington, and M. Meyers, Void growth by dislocation emission, Acta Mater. 52 (2004), pp. 1397–1408.10.1016/j.actamat.2003.11.022
  • J. Hirth and J. Lothe, Theory of Dislocations, Willey, New York, NY, 1982.
  • H. Fang, P.M. Gullett, A. Slepoy, M.F. Horstemeyer, M.I. Baskes, G.J. Wagner, and M. Li, Numerical tools for atomistic simulations, Sandia National Laboratories, California, 2004.10.2172/918395

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.