292
Views
8
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Strain relaxation in epitaxial GaAs/Si (0 0 1) nanostructures

, , , , , , , & show all
Pages 2845-2857 | Received 17 Jan 2017, Accepted 05 Jul 2017, Published online: 27 Jul 2017

References

  • G.-L. Luo, Y.-C. Hsieh, E.Y. Chang, M.H. Pilkuhn, C.-H. Chien, T.-H. Yang, C.-C. Cheng, and C.-Y. Chang, High-speed GaAs metal gate semiconductor field effect transistor structure grown on a composite Ge∕GexSi1-xSi substrate, J. Appl. Phys. 101 (2007), pp. 084501-1–084501-6.
  • D. Cengher, Z. Hatzopoulos, S. Gallis, G. Deligeorgis, E. Aperathitis, M. Androulidaki, M. Alexe, V. Dragoi, E.D. Kyriakis-Bitzaros, and G. Halkias, Fabrication of GaAs laser diodes on Si using low temperature bonding of MBE grown GaAs wafers with Si wafers, J. Cryst. Growth 251 (2003), pp. 754–759.10.1016/S0022-0248(02)02218-2
  • J. Paslaski, H.Z. Chen, H. Morkoç, and A. Yariv, High-speed GaAs p-i-n photodiodes grown on Si substrates by molecular beam epitaxy, Appl. Phys. Lett. 52 (1988), pp. 1410–1412.10.1063/1.99131
  • S. Mahajan, Defects in semiconductors and their effects on devices, Acta Mater. 48 (2000), pp. 137–149.10.1016/S1359-6454(99)00292-X
  • S. Ratanaphan, Y. Yoon, and G.S. Rohrer, The five parameter grain boundary character distribution of polycrystalline silicon, J. Mater. Sci. 49 (2014), pp. 4938–4945.10.1007/s10853-014-8195-2
  • H.F. Matare, Defect Electronics in Semiconductors, Wiley Interscience, New York, 1971.
  • O. Skibitzki, I. Prieto, R. Kozak, G. Capellini, P. Zaumseil, Y. Arroyo Rojas Dasilva, M.D. Rossell, R. Erni, H. von Känel, and T. Schroeder, Structural and optical characterization of GaAs nano-crystals selectively grown on nano-tip patterned Si(0 0 1) substrates by MOVPE, Nanotechnology 28 (2017), pp. 135301-1–135301-10.
  • R. Erni, Aberration-Corrected Imaging in Transmission Electron Microscopy, Imperial College Press, London, 2015.10.1142/p960
  • S.J. Pennycook and P.D. Nellist, Scanning Transmission Electron Microscopy, Springer, New York, 2011.10.1007/978-1-4419-7200-2
  • P. Zaumseil, G. Kozlowski, Y. Yamamoto, J. Bauer, M.A. Schubert, T.U. Schülli, B. Tillack, and T. Schroeder, Compliant Si nanostructures on SOI for Ge nanoheteroepitaxy – a case study for lattice mismatched semiconductor integration on Si(0 0 1), J. Appl. Phys. 112 (2012), pp. 043506-1–043506-5.
  • G. Niu, G. Capellini, M.A. Schubert, T. Niermann, P. Zaumseil, J. Katzer, H.M. Krause, O. Skibitzki, M. Lehmann, Y.H. Xie, H. von Känel, and T. Schroeder, Dislocation-free Ge nano-crystals via pattern independent selective Ge heteroepitaxy on Si nano-tip wafers, Sci. Rep. 6 (2016), pp. 1–11.
  • I. Prieto, R. Kozak, O. Skibitzki, M.D. Rossell, P. Zaumseil, E. Gini, K. Kunze, R. Erni, T. Schroeder, and H. von Känel, Nano-heteroepitaxy of GaAs on Si by metal organic vapor phase epitaxy, Nanotechnology 28 (2017), pp. 135701-1–135701-8.
  • M.J. Hytch, E. Snoeck, and R. Kilaas, Quantitative measurement of displacement and strain fields from HREM micrographs, Ultramicroscopy 74 (1998), pp. 131–146.10.1016/S0304-3991(98)00035-7
  • C.T. Koch, https://elim.physik.uni-ulm.de.
  • M.D. Rossell, R. Erni, M.P. Prange, J.C. Idrobo, W. Luo, R.J. Zeches, S.T. Pantelides, and R. Ramesh, Atomic structure of highly strained BiFeO3 thin films, Phys. Rev. Lett. 108 (2012), pp. 047601-1–047601-5.
  • M. Levinshtein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters, World Scientific, Singapore/New Jersey/London/Hong Kong, 1996.
  • D.K. Biegelsen, F.A. Ponce, A.J. Smith, and J.C. Tramontana, Initial stages of epitaxial growth of GaAs on (1 0 0) silicon, J. Appl. Phys. 61 (1987), pp. 1856–1859.10.1063/1.338029
  • G. Dhanaraj, K. Byrappa, V. Prasad, and M. Dudley, Handbook of Crystal Growth, Springer, Berlin Heidelberg, 2010.10.1007/978-3-540-74761-1
  • B.G. Demczyk, V.M. Naik, S. Hameed, and R. Naik, Comparison of strain relaxation in epitaxial Si0.3Ge0.7 films grown on Si(0 0 1) and Ge(0 0 1), Mater. Sci. Eng. B 94 (2002), pp. 196–201.10.1016/S0921-5107(02)00084-3
  • J.P. Hirth and J. Lothe, Theory of the Dislocations, 2nd ed., Wiley and Sons, USA, 1982.
  • A.F. Schwartzman and R. Sinclair, Metastable and equilibrium defect structure of II-VI/GaAs interfaces, J. Electron. Mater. 20 (1991), pp. 805–814.10.1007/BF02665968
  • S. Oktyabrsky and J. Narayan, New mechanism of formation of stacking faults in Gd(0 0 1)Si heterostructures, Philos. Mag. A 72 (1995), pp. 305–314.10.1080/01418619508239927
  • M. Ichimura and J. Narayan, Atomistic study of partial misfit dislocations in Ge/Si(0 0 1) heterostructures, Philos. Mag. A 73 (1996), pp. 767–778.10.1080/01418619608242996
  • D. Hull and D. Bacon, Introductions to Dislocations, 5th ed., Butterworth-Heinemann, Oxford, 2011.
  • I.J. Beyerlein, X. Zhang, and A. Misra, Growth twins and deformation twins in metals, Annu. Rev. Mater. Res. 44 (2014), pp. 329–363.10.1146/annurev-matsci-070813-113304
  • A. Gomez, D.J.H. Cockayne, P.B. Hirsch, and V. Vitek, Dissociation of near-screw dislocations in germanium and silicon, Philos. Mag. 31 (1975), pp. 105–113.10.1080/14786437508229289
  • P. Lu and D.J. Smith, Dissociated 60° dislocations in CdTe studied by high-resolution electron microscopy, Philos. Mag. B 62 (1990), pp. 435–450.10.1080/13642819008215245
  • C. Li, J. Poplawsky, Y. Wu, A.R. Lupini, A. Mouti, D.N. Leonard, N. Paudel, K. Jones, W. Yin, M. Al-Jassim, Y. Yan, and S.J. Pennycook, From atomic structure to photovoltaic properties in CdTe solar cells, Ultramicroscopy 134 (2013), pp. 113–125.10.1016/j.ultramic.2013.06.010
  • B.C. De Cooman and C.B. Carter, The accommodation of misfit at 1 0 0 heterojunctions in III–V compound semiconductors by gliding dissociated dislocations, Acta Metall. 37 (1989), pp. 2765–2777.10.1016/0001-6160(89)90311-8
  • Y. Arroyo Rojas Dasilva, R. Kozak, R. Erni, and M.D. Rossell, Structural defects in cubic semiconductors characterized by aberration-corrected scanning transmission electron microscopy, Ultramicroscopy 176 (2017), pp. 11–22.10.1016/j.ultramic.2016.09.015
  • X.-Y. Wan, J.-W. Liang, M.-L. Liu, and X.-J. Jin, Dissociated screw dislocation which can relieve strain energy in the epitaxial layer of GeSi on Si(0 0 1), Phys. Rev. B 55 (1997), pp. 9259–9262.10.1103/PhysRevB.55.9259
  • Y. Arroyo Rojas Dasilva, M.D. Rossell, F. Isa, R. Erni, G. Isella, H. von Känel, and P. Gröning, Strain relaxation in epitaxial Ge crystals grown on patterned Si(0 0 1) substrates, Scr. Mater. 127 (2016), pp. 169–172.
  • L. Li, Z. Gan, M.R. McCartney, H. Liang, H. Yu, Y. Gao, J. Wang, and D.J. Smith, Atomic configurations at InAs partial dislocation cores associated with Z-shape faulted dipoles, Sci. Rep. 3 (2013), pp. 3229-1–3229-5.
  • T. Paulauskas, C. Buurma, E. Colegrove, B. Stafford, Z. Guo, M.K.Y. Chan, C. Sun, M.J. Kim, S. Sivananthan, and R.F. Klie, Atomic scale study of polar Lomer-Cottrell and Hirth lock dislocation cores in CdTe, Acta Crystallogr. Sect. A. Found. Crystallogr. 70 (2014), pp. 524–531.10.1107/S2053273314019639
  • M. Loubradou, R. Bonnet, and A. Vila, A triple-node intrinsic stacking fault/nanotwin/extrinsic stacking fault in a small GaAs island grown on a Si (0 0 1) substrate, Philos. Mag. Lett. 74 (1996), pp. 1–8.10.1080/095008396180498
  • L. Liu, Y. Zhang, and T.-Y. Zhang, Strain relaxation in heteroepitaxial films by misfit twinning. I. Critical thickness, J. Appl. Phys. 101 (2007), pp. 063501-1–063501-12.
  • Y.T. Zhu, X.L. Wu, X.Z. Liao, J. Narayan, L.J. Kecskés, and S.N. Mathaudhu, Dislocation-twin interactions in nanocrystalline fcc metals, Acta Mater. 59 (2011), pp. 812–821.10.1016/j.actamat.2010.10.028
  • V. Yamakov, D. Wolf, S.R. Phillpot, and H. Gleiter, Dislocation-dislocation and dislocation-twin reactions in nanocrystalline Al by molecular dynamics simulation, Acta Mater. 51 (2003), pp. 4135–4147.10.1016/S1359-6454(03)00232-5
  • W.K. Liu, M. Banzon Santos, Thin Films: Heteroepitaxial Systems, World Scientific, USA, 1999.
  • E.W.Z. Liliental-Weber and J. Washburn, Defect control in Semiconductors, K. Sumino, ed., Elsevier, Amsterdam, 1990, pp. 1295–1305.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.