537
Views
15
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Evolution of dislocation density in a hot rolled Zr–2.5Nb alloy with plastic deformation studied by neutron diffraction and transmission electron microscopy

ORCID Icon, &
Pages 2888-2914 | Received 01 Feb 2017, Accepted 13 Jul 2017, Published online: 27 Jul 2017

References

  • G.W. Groves and A. Kelly, Independent slip systems in crystals, Philos. Mag. 8 (1963), pp. 877–887.10.1080/14786436308213843
  • M.H. Yoo, Slip, twinning, and fracture in hexagonal close-packed metals, Metall. Trans. A. 12 (1981), pp. 409–418.10.1007/BF02648537
  • E. Tenckhoff, Deformation Mechanisms, Texture, and Anisotropy in Zirconium and Zircaloy, ASTM Special Technical Publication (STP 966), Philadelphia, PA, 1988.
  • A. Akhtar, Basal slip in zirconium, Acta. Metall. 21 (1973), pp. 1–11.10.1016/0001-6160(73)90213-7
  • A. Akhtar, Compression of zirconium single crystals parallel to the c-axis, J. Nucl. Mater. 47 (1973), pp. 79–86.10.1016/0022-3115(73)90189-X
  • A. Akhtar and A. Teghtsoonian, Plastic deformation of zirconium single crystals, Acta. Metall. 19 (1971), pp. 655–663.10.1016/0001-6160(71)90019-8
  • J.E. Bailey, Electron microscope studies of dislocations in deformed zirconium, J. Nucl. Mater. 7 (1962), pp. 300–310.10.1016/0022-3115(62)90247-7
  • P. Soo and G.T. Higgins, The deformation of zirconium-oxygen single crystals, Acta. Metall. 16 (1968), pp. 177–186.10.1016/0001-6160(68)90113-2
  • R.J. McCabe, E.K. Cerreta, A. Misra, G.C. Kaschner, and C.N. Tomé, Effects of texture, temperature and strain on the deformation modes of zirconium, Philos. Mag. 86 (2006), pp. 3595–3611.10.1080/14786430600684500
  • F. Xu, M.R. Daymond, and R.A. Holt, Modeling lattice strain evolution during uniaxial deformation of textured Zircaloy-2, Acta. Mater. 56 (2008), pp. 3672–3687.10.1016/j.actamat.2008.04.019
  • F. Long, F. Xu, and M.R. Daymond, Temperature dependence of the activity of deformation modes in an HCP zirconium alloy, Metall. Mater. Trans. A. 44 (2013), pp. 4183–4193.10.1007/s11661-013-1758-z
  • R.A. Holt and S.A. Aldridge, Effect of extrusion variables on crystallographic texture of Zr–2.5 wt% Nb, J. Nucl. Mater. 135 (1985), pp. 246–259.10.1016/0022-3115(85)90084-4
  • R.A. Holt, In-reactor deformation of cold-worked Zr–2.5 Nb pressure tubes, J. Nucl. Mater. 372 (2008), pp. 82–214.
  • R.A. Holt and E.F. Ibrahim, Factors affecting the anisotropy of irradiation creep and growth of zirconium alloys, Acta. Met. 27 (1979), pp. 1319–1328.10.1016/0001-6160(79)90201-3
  • R.A. Holt, A. Causey, and C.H. Woo, The effect of intergranular stresses on the texture dependence of irradiation growth in zirconium alloys, J. Nucl. Mater. 159 (1988), pp. 225–236.
  • D.K. Rodgers, C.E. Coleman, M. Griffiths, G. Bickel, J.R. Theaker, I. Muir, A. Bahurmuz, S.S. Lawrence, and M. Resta Levi, In-reactor performance of pressure tubes in CANDU reactors, J. Nucl. Mater. 383 (2008), pp. 22–27.10.1016/j.jnucmat.2008.08.037
  • S. Cai, M.R. Daymond, R.A. Holt, M.A. Gharghouri, and E.C. Oliver, Evolution of interphase and intergranular stresses in Zr–2.5 Nb during room temperature deformation, Mater. Sci. Engi. A. 501 (2009), pp. 166–181.
  • S. Cai, M.R. Daymond, and R.A. Holt, Modeling the room temperature deformation of a two-phase zirconium alloy, Acta. Mater. 57(2009), pp. 407–419.
  • J.J. Gilman, Etch pits and dislocations in zinc monocrystals, AIME Trans. 206 (1956), pp. 998–1004.
  • M.A.W. Lowden and W.B. Hutchinson, Texture strengthening and strength differential in titanium-6Al-4 V, Metall. Trans. A. 6 (1975), pp. 441–448.10.1007/BF02658401
  • E.G. Tapetado and M.H. Loretto, A study of kinking and buckling in zinc single crystals, Philos. Mag. 30 (1974), pp. 515–526.10.1080/14786439808206577
  • S.L. Mannan and P. Rodriguez, Strength differential effect in zirconium alloys, Scri. Metall. 7 (1973), pp. 1069–1074.10.1016/0036-9748(73)90016-1
  • J.A. Medina Perilla and J. Gil Sevillano, Two-dimensional sections of the yield locus of a Ti-6%Al-4%V alloy with a strong transverse-type crystallographic α-texture, Mater. Sci. Engi. A. 201 (1995), pp. 103–110.
  • I.P. Jones and W.B. Hutchinson, Stress-state dependence of slip in Titanium-6Al-4 V and other H.C.P. metals, Acta Metall. 29 (1981), pp. 951–968.10.1016/0001-6160(81)90049-3
  • T. Ungár and A. Borbély, The effect of dislocation contrast on X-ray line broadening: A new approach to line profile analysis, Appl. Phys. Lett. 69 (1996), pp. 3173–3175.10.1063/1.117951
  • T. Ungár, J. Gubicza, G. Ribárik, and A. Borbély, Crystallite size distribution and dislocation structure determined by diffraction profile analysis: Principles and practical application to cubic and hexagonal crystals, J. Appl. Cryst. 34 (2001), pp. 298–310.10.1107/S0021889801003715
  • G. Ribárik, J. Gubicza, and T. Ungár, Correlation between strength and microstructure of ball-milled Al–Mg alloys determined by X-ray diffraction, Mater. Sci. Engi. A. 387–389 (2004), pp. 343–347.10.1016/j.msea.2004.01.089
  • L. Balogh, G. Ribárik, and T. Ungár, Stacking faults and twin boundaries in fcc crystals determined by X-ray diffraction profile analysis, J. Appl. Cryst. 100 (2006), pp. 023512-1–10.
  • W. Woo, L. Balogh, T. Ungár, H. Choo, and Z. Feng, Grain structure and dislocation density measurements in a friction-stir welded aluminum alloy using X-ray peak profile analysis, Mater. Sci. Engi. A. 498 (2008), pp. 308–313.10.1016/j.msea.2008.08.007
  • L. Balogh, G. Tichy, and T. Ungár, Twinning on pyramidal planes in hexagonal close packed crystals determined along with other defects by X-ray line profile analysis, J. Appl. Cryst. 42 (2009), pp. 580–591.10.1107/S0021889809022936
  • L. Balogh, D.W. Brown, P. Mosbrucker, F. Long, and M.R. Daymond, Dislocation structure evolution induced by irradiation and plastic deformation in the Zr–2.5 Nb nuclear structural material determined by neutron diffraction line profile analysis, Acta. Mater. 60 (2012), pp. 5567–5577.
  • D.W. Brown, B. Clausen, T. Sisneros, L. Balogh, and I.J. Beyerlein, In situ neutron diffraction measurements during annealing of deformed beryllium with differing initial textures, Met. Mater. Trans. A. 44 (2013), pp. 5665–5675.10.1007/s11661-013-1932-3
  • P. Mosbrucker, D. Brown, O. Anderoglu, L. Balogh, S. Maloy, T.A. Sisneros, J. Almer, E. Tulk, W. Morgenroth, and A.C. Dippel, Neutron and X-ray diffraction analysis of the effect of irradiation dose and temperature on microstructure of irradiated HT-9 steel, J. Nucl. Mater. 443 (2013), pp. 522–530.10.1016/j.jnucmat.2013.07.065
  • J.J. Kearns and C.R. Woods, Effect of texture, grain size, and cold work on the precipitation of oriented hydrides in Zircaloy tubing and plate, J. Nucl. Mater. 20 (1966), pp. 241–261.10.1016/0022-3115(66)90036-5
  • S. Cai, Evolution of interphase and intergranular strain in ZrNb alloys during deformation at room temperature, Ph.D. diss., Queen’s University, 2008.
  • T. Proffen, T. Egami, S. Billinge, A. Cheetham, D. Louca, and J.B. Parise, Building a high resolution total scattering powder diffractometer–upgrade of NPD at MLNSC, Appl. Phys. A. 74 (2002), pp. s163–s165.10.1007/s003390201929
  • A.R. Stokes, A numerical fourier-analysis method for the correction of widths and shapes of lines on X-ray powder photographs, Proc. Phys. Soc. 61 (1948), pp. 382–391.10.1088/0959-5309/61/4/311
  • M. Wilkens, Das mittlere Spannungsquadrat 〈σ2〉 begrenzt regellos verteilter Versetzungen in einem zylinderförmigen Körper, Acta. Metall. 17 (1969), pp. 1155–1159.10.1016/0001-6160(69)90092-3
  • M. Wilkens, The determination of density and distribution of dislocations in deformed single crystals from broadened X-ray diffraction profiles, Phys. Status Solidi. 2 (1970), pp. 359–370.10.1002/(ISSN)1521-396X
  • K. Máthis, K. Nyilas, A. Axt, I. Dragomir-Cernatescu, T. Ungár, and P. Lukáč, The evolution of non-basal dislocations as a function of deformation temperature in pure magnesium determined by X-ray diffraction, Acta. Mater. 52 (2004), pp. 2889–2894.10.1016/j.actamat.2004.02.034
  • T. Ungár, O. Castelnau, G. Ribárik, M. Drakopoulos, J.L. Béchade, T. Chauveau, A. Snigirev, I. Snigireva, C. Schroer, and B. Bacroix, Grain to grain slip activity in plastically deformed Zr determined by X-ray micro-diffraction line profile analysis, Acta. Mater. 55 (2007), pp. 1117–1127.10.1016/j.actamat.2006.09.031
  • G.K. Williamson and W.H. Hall, X-ray line broadening from filed aluminium and wolfram, Acta. Metall. 1 (1953), pp. 22–31.10.1016/0001-6160(53)90006-6
  • T. Ungár, G. Tichy, J. Gubicza, and R. Hellmig, Correlation between subgrains and coherently scattering domains, Powd. Diffr. 20 (2005), pp. 366–375.10.1154/1.2135313
  • S. Hata, H. Miyazaki, S. Miyazaki, M. Mitsuhara, M. Tanaka, K. Kaneko, K. Higashida, K. Ikeda, H. Nakashima, S. Matsumura, J.S. Barnard, J.H. Sharp, and P.A. Midgley, High-angle triple-axis specimen holder for three-dimensional diffraction contrast imaging in transmission electron microscopy, Ultramicroscopy 111 (2011), pp. 1168–1175.10.1016/j.ultramic.2011.03.021
  • G. Monnet, B. Devincre, and L.P. Kubin, Dislocation study of prismatic slip systems and their interactions in hexagonal close packed metals: Application to zirconium, Acta. Mater. 52 (2004), pp. 4317–4328.10.1016/j.actamat.2004.05.048
  • F. Long, M.R. Daymond, and Z.W. Yao, Deformation mechanism study of a hot rolled Zr–2.5 Nb alloy by transmission electron microscopy. I. Dislocation microstructures in as-received state and at different plastic strains, J. Appl. Phys. 117 (2015), pp. 094307-1–10.
  • D. Caillard, M. Rautenberg, and X. Feaugas, Dislocation mechanisms in a zirconium alloy in the high-temperature regime: An in situ TEM investigation, Acta. Mater. 87 (2015), pp. 283–292.10.1016/j.actamat.2015.01.016
  • C. Mareau and M. Daymond, Study of internal strain evolution in Zircaloy-2 using polycrystalline models: Comparison between a rate-dependent and a rate-independent formulation, Acta. Mater. 58 (2010), pp. 3313–3325.10.1016/j.actamat.2010.02.005
  • F. Long, L. Balogh, D.W. Brown, P. Mosbrucker, T. Skippon, C.D.Judge, and M.R. Daymond, Effect of neutron irradiation on deformation mechanisms operating during tensile testing of Zr–2.5Nb, Acta. Mater. 102 (2016), pp. 352–363.
  • B.C. Wonsiewicz and W.A. Backofen, Plasticity of magnesium crystals, Trans. TMS-AIME. 239 (1967), pp. 1422–1431.
  • J.I. Dickson and G.B. Craig, Room-temperature basal slip in zirconium, J. Nucl. Mater. 40 (1971), pp. 346–348.10.1016/0022-3115(71)90103-6
  • J.L. Martin and R.E. Reed-Hiil, A study of basal slip kink bands in polycrystalline zirconium, Trans. Met. Soc. AIME. 230 (1964), pp. 780–785.
  • F. Xu, M.R. Daymond, and R.A. Holt, Evidence for basal 〈a〉 slip in Zircaloy-2 at room temperature from polycrystalline modeling, J. Nucl. Mater. 373 (2008), pp. 217–225.10.1016/j.jnucmat.2007.05.052
  • M. Knezevic, I.J. Beyerlein, T. Nizolek, N.A. Mara, and T.M. Pollock, Anomalous basal slip activity in zirconium under high-strain deformation, Mater. Res. Lett. 1 (2013), pp. 133–140.10.1080/21663831.2013.794375
  • K. Petterson, Evidence for basal or near-basal slip in irradiated Zircaloy, J. Nucl. Mater. 105 (1982), pp. 341–344.10.1016/0022-3115(82)90394-4
  • F. Onimus, J.L. Béchade, and D. Gilbon, Experimental analysis of slip systems activation in neutron-irradiated zirconium alloys and comparison with polycrystalline model simulations, Met. Mater. Trans. A. 44 (2013), pp. 45–60.10.1007/s11661-012-1463-3
  • S. Cai, M.R. Daymond, and R.A. Holt, Deformation of high β-phase fraction Zr–Nb alloys at room temperature, Acta Mater. 60 (2012), pp. 3355–3369.10.1016/j.actamat.2012.02.040
  • J. Geng, M.F. Chisholm, R.K. Mishra, and K.S. Kumar, An electron microscopy study of dislocation structures in Mg single crystals compressed along [0 0 0 1] at room temperature, Philos. Mag. 95 (2015), pp. 3910–3932.10.1080/14786435.2015.1108531
  • Z. Wu and W.A. Curtin, Intrinsic structural transitions of the pyramidal I 〈c + a〉 dislocation in magnesium, Scri. Mater. 116 (2016), pp. 104–107.10.1016/j.scriptamat.2016.01.041

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.