352
Views
8
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Dependence of hardening and saturation stress in persistent slip bands on strain amplitude during cyclic fatigue loading

, &
Pages 2947-2970 | Received 01 Dec 2016, Accepted 20 Jul 2017, Published online: 18 Aug 2017

References

  • H. Mughrabi, F. Ackermann, and K. Herz, Persistent slip bands in fatigued face-centered and body-centered cubic metals, Fatigue Mechanisms, STP675-EB, ASTM International, West Conshohocken, PA, 1979. p. 69. doi:10.1520/STP675-EB.
  • H. Mughrabi, Microscopic mechanisms of metal fatigue, in Strength of metals and alloys, P. Haasen, V. Gerold, G. Kostorz, eds. Proceedings of the Fifth International Conference, Aachen, Germany, 1980, p. 1615.
  • P.J. Woods, Low-amplitude fatigue of copper and copper-5 at. % aluminium single crystals, Philos. Mag. 28(1) (1973), pp. 155–191.
  • A.T. Winter, A model for the fatigue of copper at low plastic strain amplitudes, Philos. Mag. 30(4) (1974), pp. 719–738.
  • J.M. Finney and C. Laird, Strain localization in cyclic deformation of copper single crystals, Philos. Mag. 31(2) (1975), pp. 339–366.
  • U. Eßmann and H. Mughrabi, Annihilation of dislocations during tensile and cyclic deformation and limits of dislocation densities, Philos. Mag. A -- Phys. Condens. Matter Struct. Defects Mech. Prop. 40 6(1979), pp. 731–756.
  • J. Lepinoux and L.P. Kubin, In situ TEM observations of the cyclic dislocation behavior in persistent slip bands of copper single crystals, Philos. Mag. A 51(5) (1985), pp. 675–696.
  • A. Weidner, R. Beyer, C. Blochwitz, C. Holste, A. Schwab, and W. Tirschler, Slip activity of persistent slip bands in polycrystalline nickel, Mater. Sci. Eng.: A 435 (2006), pp. 540–546.
  • W.H. Kim and C. Laird, Crack nucleation and stage i propagation in high strain fatigue?i. microscopic and interferometric observations, Acta Metall. 26(5) (1978), pp. 777–787.
  • H. Mughrabi, R. Wang, K. Differt, and U. Essmann, Fatigue crack initiation by cyclic slip irreversibilities in high-cycle fatigue, in Fatigue mechanisms: Advances in quantitative measurement of physical damage. ASTM International, 1983.
  • K. Differt, U. Esmann, and H. Mughrabi, A model of extrusions and intrusions in fatigued metals ii. surface roughening by random irreversible slip, Philos. Mag. A 54(2) (1986), pp. 237–258.
  • J. Polák and M. Sauzay, Growth of extrusions in localized cyclic plastic straining, Mater. Sci. Eng.: A 500(1) (2009), pp. 122–129.
  • M. Sauzay, J. Liu, F. Rachdi, L. Signor, T. Ghidossi, and P. Villechaise, Physically-based simulations of the cyclic behavior of fcc polycrystals, in Advanced Materials Research Vol. 891, Trans Tech Publications, 2014, pp. 833–839.
  • L.P. Kubin, G.R. Canova, M. Condat, B. Devincre, V. Pontikis, and Y. Brechet, Dislocation microstructures and plastic flow: A 3D simulation, Solid State Phenom. 23 (1992), pp. 455–472.
  • H.M. Zbib, M. Rhee, and J.P. Hirth, On plastic deformation and the dynamics of 3D dislocations, Int. J. Mech. Sci. 40(2–3) (1998), pp. 113–127.
  • D. Weygand, L.H. Friedman, E. Van der Giessen, and A. Needleman, Aspects of boundary-value problem solutions with three-dimensional dislocation dynamics, Model. Simul. Mater. Sci. Eng. 10(4) (2002), pp. 437–468.
  • V. Bulatov, W. Cai, J. Fier, M. Hiratani, G. Hommes, T. Pierce, M. Tang, M. Rhee, K. Yates, and T. Arsenlis, Scalable line dynamics in ParaDiS, in Supercomputing, 2004. Proceedings of the ACM/IEEE SC2004 Conference, IEEE, 2004. p. 19.
  • G. Po, M.S. Mohamed, T. Crosby, C. Erel, A. El-Azab, and N.M. Ghoniem, Recent progress in discrete dislocation dynamics and its applications to micro plasticity, JOM 66(10) (2014), pp. 2108–2120.
  • V.S. Deshpande, A. Needleman, and E. Van der Giessen, Discrete dislocation plasticity modeling of short cracks in single crystals, Acta Mater. 51(1) (2003), pp. 1–15.
  • S. Brinckmann and E. Van der Giessen, A discrete dislocation dynamics study aiming at understanding fatigue crack initiation, Mater. Sci. Eng. A -- Struct. Mater. Prop. Microstruct. Process. 387 (2004), pp. 461–464.
  • C. Déprés, C.F. Robertson, and M.C. Fivel, Low-strain fatigue in AISI 316L steel surface grains: A three-dimensional discrete dislocation dynamics modelling of the early cycles I. Dislocation microstructures and mechanical behaviour, Philos. Mag. 84(22) (2004), pp. 2257–2275.
  • C. Déprés, C.F. Robertson, and M.C. Fivel, Low-strain fatigue in 316L steel surface grains: a three dimension discrete dislocation dynamics modelling of the early cycles. Part 2: Persistent slip markings and micro-crack nucleation, Philos. Mag. 86(1) (2006), pp. 79–97.
  • V.P. Reddy, C. Robertson, C. Déprés, and M. Fivel, Effect of grain disorientation on early fatigue crack propagation in face-centred-cubic polycrystals: A three-dimensional dislocation dynamics investigation, Acta Mater. 61 (2013), pp. 5300–5310.
  • C. Déprés, G.V. Prasad Reddy, C. Robertson, and M. Fivel, An extensive 3D dislocation dynamics investigation of stage-I fatigue crack propagation, Philos. Mag. 94(36) (2014), pp. 4115–4137.
  • A.M. Hussein and J.A. El-Awady, Quantifying dislocation microstructure evolution and cyclic hardening in fatigued face-centered cubic single crystals, J. Mech. Phys. Solids 91 (2016), pp. 126–144.
  • A.M. Hussein and J.A. El-Awady, Surface roughness evolution during early stages of mechanical cyclic loading, Int. J. Fatigue 87 (2016), pp. 339–350.
  • J.C. Grosskreutz and H. Mughrabi, Constitutive Equations in Plasticity, edited by AS Argon, MA, Cambridge, 1975.
  • L.M. Brown, Dislocation plasticity in persistent slip bands, Mater. Sci. Eng. A -- Struct. Mater. Prop. Microstruct. Process. 285(1--2) (2000), pp. 35–42.
  • L.M. Brown, Dislocation bowing and passing in persistent slip bands, Philos. Mag. 86(25–26) (2006), pp. 4055–4068.
  • L.M. Brown, A discussion of the structure and behaviour of dipole walls in cyclic plasticity, Philos. Mag. 84(24) (2004), pp. 2501–2520.
  • H. Mughrabi and F. Pschenitzka, Constrained glide and interaction of bowed-out screw dislocations in confined channels, Philos. Mag. 85(26–27) (2005), pp. 3029–3045.
  • K.W. Schwarz and H. Mughrabi, Interaction and passing stress of two threading dislocations of opposite sign in a confined channel, Philos. Mag. Lett. 86(12) (2006), pp. 773–785.
  • J. Křišťan and J. Kratochvíl, Interactions of glide dislocations in a channel of a persistent slip band, Philos. Mag. 87(29) (2007), pp. 4593–4613.
  • J.A. El-Awady, N.M. Ghoniem, and H. Mughrabi, Dislocation modeling of localized plasticity in persistent slip bands, in Proceedings of the 136th TMS Annual Meeting and Exhibition, Materials Processing and Manufacturing Division Symposium: Mechanics and Materials Modeling and Materials Design Methodologies, Feb 2007.
  • G. Po and N.M. Ghoniem, Mechanics of defect evolution library, MODELIB, 2015. Available at https://bitbucket.org/model/model/wiki/home.
  • M. Verdier, M. Fivel, and I. Groma, Mesoscopic scale simulation of dislocation dynamics in fcc metals: Principles and applications, Model. Simul. Mater. Sci. Eng. 6(6) (1998), pp. 755–770.
  • M. Rhee, H.M. Zbib, J.P. Hirth, H. Huang, and T. De la Rubia, Models for long-/short-range interactions and cross slip in 3d dislocation simulation of bcc single crystals, Model. Simul. Mater. Sci. Eng. 6(4) (1998), p. 467.
  • J. Bonneville, B. Escaig, and J.L. Martin, A study of cross-slip activation parameters in pure copper, Acta Metall. 36(8) (1988), pp. 1989–2002.
  • T. Crosby, G. Po, C. Erel, and N.M. Ghoniem, The origin of strain avalanches in sub-micron plasticity of fcc metals, Acta Mater. 89 (2015), pp. 123–132.
  • S. Verecky, J. Kratochvíl, and F. Kroupa, The stress field of rectangular prismatic dislocation loops, Phys. Status Solidi A -- Appl. Res. 191(2) (2002), pp. 418–426.
  • J.G. Antonopoulos, L.M. Brown, and A.T. Winter, Vacancy Dipoles in Fatigued Copper, Philos. Mag. 34(4) (1976), pp. 549–563.
  • M. Sauzay and L.P. Kubin, Scaling laws for dislocation microstructures in monotonic and cyclic deformation of fcc metals, Prog. Mater. Sci. 56(6) (2011), pp. 725–784.
  • X. Han, N.M. Ghoniem, and Z. Wang, Parametric dislocation dynamics of anisotropic crystals, Philos. Mag. 83(31–34) (2003), pp. 3705–3721.
  • H. Mughrabi, Cyclic hardening and saturation behavior of copper single-crystals, Mater. Sci. Eng. 33(2) (1978), pp. 207–223.
  • J.R. Hancock and J.C. Grosskreutz, Mechanisms of fatigue hardening in copper single crystals, Acta Metall. 17(2) (1969), pp. 77–97.
  • D.P. Watt, J.D. Embury, and R.K. Ham, The relation between surface and interior structures in low-amplitude fatigue, Philos. Mag. 17(145) (1968), pp. 199–203.
  • P.O. Kettunen and U.F. Kocks, Fatigue hardening and fatigue life, Acta Metall. 20(1) (1972), pp. 95–103.
  • H. Mughrabi and T. Ungar, Long-range internal stresses in deformed single-phase materials: The composite model and its consequences, Dislocations Solids 11 (2002), pp. 343–411.
  • H. Mughrabi, Dislocation wall and cell structures and long-range internal-stresses in deformed metal crystals, Acta Metall. 31(9) (1983), pp. 1367–1379.
  • J. Kratochvíl, M. Saxlová, B. Devincre, and L.P. Kubin, On the sweeping of dipolar loops by gliding dislocations, Mater. Sci. Eng.: A 234–236 (1997), pp. 318–321.
  • L.P. Kubin and J. Kratochvíl, Elastic model for the sweeping of dipolar loops, Philos. Mag. A – Phys. Condens. Matter Struct. Defects Mech. Proper. 80 1(2000), pp. 201–218.
  • S. Verecky, J. Kratochvíl, and L.P. Kubin, The sweeping of a dipolar loop by a glide dislocation in a PSB channel, Le J. de Phys. IV. 11 PR5(2001), pp. Pr5-35–Pr5-41.
  • J. Huang, N.M. Ghoniem, and J. Kratochvíl, On the sweeping mechanism of dipolar dislocation loops under fatigue conditions, Model. Simul. Mater. Sci. Eng. 12(5) (2004), pp. 917–928.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.