314
Views
8
CrossRef citations to date
0
Altmetric
Part A: Materials Science

A comparative study of nanovoid growth in FCC metals

, &
Pages 2985-3007 | Received 03 Apr 2017, Accepted 01 Aug 2017, Published online: 29 Aug 2017

References

  • M. Ponga, M. Ortiz, and M.P. Ariza, Finite-temperature non-equilibrium quasi-continuum analysis of nanovoid growth in copper at low and high strain rates, Mech. Mater. 90 (2015), pp. 253–267.
  • S. Traiviratana, E.M. Bringa, J.B. David, and M.A. Meyers, Void growth in single and bicrystalline metals: Atomistic calculations, Shock Compression Condens. Matter 955 (2007), pp. 343–346.
  • E.M. Bringa, S. Traiviratana, and M.A. Meyers, Void initiation in fcc metals: Effect of loading orientation and nanocrystalline effects, Acta Mater. 58 (2010), pp. 4458–4477.
  • A. Higginbotham, E.M. Bringa, J. Marian, N. Park, M. Suggit, and J.S. Wark, Simulations of copper single crystals subjected to rapid shear, J. Appl. Phys. 109 (2011), p. 063530.
  • R. Rudd, E. Seppälä, L. Dupuy, and J. Belak, Void coalescence processes quantified through atomistic and multiscale simulation, J. Comput. Aided Mater. Des. 14 (2007), pp. 425–434.
  • J. Marian, J. Knap, and M. Ortiz, Nanovoid cavitation by dislocation emission in aluminum, Phys. Rev. Lett. 93 (2004), p. 165503.
  • M.P. Ariza, I. Romero, M. Ponga, and M. Ortiz, Hotqc simulation of nanovoid growth under tension in copper, Int. J. Fract. 174 (2011), pp. 75–85.
  • Y. Kulkarni, J. Knap, and M. Ortiz, A variational approach to coarse graining of equilibrium and non-equilibrium atomistic description at finite temperature, J. Mech. Phys. Solids 56 (2008), pp. 1417–1449.
  • G. Venturini, K. Wang, I. Romero, M.P. Ariza, and M. Ortiz, Atomistic long-term simulation of heat and mass transport, J. Mech. Phys. Solids 73 (2014), pp. 242–268.
  • E. Jaynes, Information theory and statistical mechanics, Phys. Rev. 106 (1957), pp. 620–630.
  • M. Ponga, A.A. Ramabathiran, K. Bhattacharya, and M. Ortiz, Dynamic behavior of nano-voids in magnesium under hydrostatic tensile stress, Modell. Simul. Mater. Sci. Eng. 24 (2016), p. 065003.
  • E.B. Tadmor, M. Ortiz, and R. Phillips, Quasicontinuum analysis of defects in solids, Philos. Mag. 73 (1996), pp. 1529–1563.
  • J. Knap and M. Ortiz, An analysis of the quasicontinuum method, J. Mech. Phys. Solids 49 (2001), pp. 1899–1923.
  • M. Ortiz and A. Molinari, Effect of strain-hardening and rate sensitivity on the dynamic growth of a void in a plastic material, ASME J. Appl. Mech. 59 (1992), pp. 48–53.
  • Y. Mishin, D. Farkas, M.J. Mehl, and D.A. Papaconstantopoulos, Interatomic potentials for monoatomic metals from experimental data and ab initio calculations, Phys. Rev. B 59 (1999), pp. 3393–3407.
  • P. Underwood, Computational methods for transient analysis, in Computational Methods in Mechanics, T. Belytschko and T.J.R. Hughes, eds., North-Holland, Amsterdam, 1983.
  • P. Allen and D.J. Tildesley, Computer Simulation of Liquids, Oxford Science Publications, Clarendon Press, Bristol, 1989.
  • A. Stukowski and K. Albe, Extracting dislocations and non-dislocation crystal defects from atomistic simulation data, Modelling and Simulation in Materials Science and Engineering 18 (2010), p. 085001.
  • T. Tsuru and Y. Shibutani, Initial yield process around a spherical inclusion in single-crystalline aluminium, J. Phys. D: Appl. Phys. 40 (2007), pp. 2183–2188.
  • A.H. Cottrell, Lx. The formation of immobile dislocations during slip, London, Edinburgh, Dublin Philos. Mag. J. Sci. 43 (1952), pp. 645–647.
  • M.P. Liu and H.J. Roven, High density hexagonal and rhombic shaped nanostructures in a fcc aluminum alloy induced by severe plastic deformation at room temperature, Appl. Phys. Lett. 90 (2007), p. 083115.
  • Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, and J.D. Kress, Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations, Phys. Rev. B. 63 (2001), p. 224106.
  • D.R. Oakley and N.F. Knight, Adaptive dynamic relaxation algorithm for non-linear hyperelastic structures part i. formulation, Comput. Methods Appl. Mech. Eng. 126 (1995), pp. 67–89.
  • D.R. Oakley, N.F. Knight, and D.D. Warner, Adaptive dynamic relaxation algorithm for non-linear hyperelastic structures part III. parallel implementation, Comput. Methods Appl. Mech. Eng. 126 (1995), pp. 111–129.
  • E. Seppälä, J. Belak, and R. Rudd, Effect of stress triaxiality on void growth in dynamic fracture of metals: A molecular dynamics study, Phys. Rev. B 69 (2004), p. 134101–134120.
  • J.P. Hirth and J. Lothe, Theory of Dislocations. 2nd New edition of Revised edition, Krieger Publishing Company, Malabar, FL, 1992.
  • J.A. Gorman, The mobility of dislocations in high purity aluminum, Ph.D. diss., California Institute of Technology, 1968.
  • P. Ponte, Castañeda and M. Zaidman, Constitutive models for porous materials with evolving microstructures, J. Mech. Phys. Solids 42 (1994), pp. 1459–1497.
  • E.T. Jaynes, Information theory and statistical mechanics I, Phys. Rev. 106 (1957), pp. 620–630.
  • E.T. Jaynes, Information theory and statistical mechanics II, Phys. Rev. 108 (1957), pp. 171–190.
  • D.N. Zubarev, Non-equilibrium Statistical Thermodynamics, Consultants Bureau, New York, 1974.
  • H. Callen, Thermodynamics and an Introduction to Thermostatistics, John Wiley & Sons, New York, 1985.
  • T. Hill, Statistical Mechanics: Principles and Selected Applications, Dover Publications, New York, 1987.
  • L.A. Girifalco, Statistical Mechanics of Solids, Oxford University Press, New York, 2000.
  • L. Onsager, Reciprocal relations in irreversible processes. I, Phys. Rev. 37 (1931), pp. 405–426.
  • L. Onsager, Reciprocal relations in irreversible processes. II, Phys. Rev. 38 (1931), pp. 2265–2279.
  • S.R. deGroot and P. Mazur, Non-equilibrium Thermodynamics, North-Holland, Amsterdam, 1962.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.