497
Views
22
CrossRef citations to date
0
Altmetric
Part A: Materials Science

First principles study of structural, magnetic and electronic properties of CrAs

& ORCID Icon
Pages 3276-3295 | Received 08 Nov 2016, Accepted 21 Aug 2017, Published online: 15 Sep 2017

References

  • M.N. Norman, The challenge of unconventional superconductivity, Science 332 (2011), pp. 196–200.
  • G. Goll, Unconventional Superconductors, Springer Tracts in Modern Physics, Springer, Berlin, 2006.
  • R. Movshovich, M. Jaime, J.D. Thompson, C. Petrovic, Z. Fisk, P.G. Pagliuso, and J.L. Sarrao, Unconventional superconductivity in CeIrIn5 and CeIoIn5: Specific heat and thermal conductivity studies, Phys. Rev. Lett. 86 (2001), pp. 5152-1–5152-5.
  • S. Lefebvre, P. Wzietek, S. Brown, C. Bourbonnais, D. Jérome, C. Mézière, M. Fourmigué, and P. Batail, Mott transition, antiferromagnetism, and unconventional superconductivity in layered organic superconductors, Phys. Rev. Lett. 85 (2000), pp. 5420–5423.
  • D.J. Van Harlingen, Phase-sensitive tests of the symmetry of the pairing state in the high-temperature superconductors - Evidence for dx2-y2 symmetry, Rev. Mod. Phys. 67 (1995), pp. 515–535.
  • A.P. Mackenzie and Y. Maeno, The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing, Rev. Mod. Phys. 75 (2003), pp. 657–712.
  • I.I. Mazin, D.J. Singh, M.D. Johannes, and M.H. Du, Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1-XFx, Phys. Rev. Lett. 101 (2008), pp. 057003-1–057003-6.
  • C.M. Varma, Pseudogap phase and the quantum-critical point in copper-oxide metals, Phys. Rev. Lett. 83 (1999), pp. 3538–3541.
  • C. Noce, G. Busiello, and M. Cuoco, Effect of magnetic fluctuations on the normal-state properties of Sr2RuO4, Europhys. Lett. 51 (2000), pp. 195–201.
  • C. Noce, A. Vecchione, M. Cuoco, and A. Romano (eds.), Ruthenate and Rutheno-Cuprate Materials Unconventional Superconductivity, Magnetism and Quantum Phase Transitions, Springer Verlag, Berlin, 2002.
  • D. van der Marel, H.J.A. Molegraaf, J. Zaanen, Z. Nussinov, F. Carbone, A. Damascelli, H. Eisaki, M. Greven, P.H. Kes, and M. Li, Quantum critical behaviour in a high-TC superconductor, Nature 425 (2003), pp. 271–274.
  • S. Jiang, H. Xing, G. Xuan, C. Wang, Z. Ren, C. Feng, J. Dai, Z. Xu, and G. Cao, Superconductivity up to 30 K in the vicinity of the quantum critical point in BaFe2(As1-xPx)2, J. Phys.: Condens Matter. 21 (2009), pp. 382203-1–382203-7.
  • T. Shibauchi, A. Carrington, and Y. Matsuda, A quantum critical point lying beneath the superconducting dome in iron pnictides, Ann Rev Conden Matt Phys 5 (2014), pp. 113–135.
  • S. Seo, E. Park, E.D. Bauer, F. Ronning, J.N. Kim, J.-H. Shim, J.D. Thompson, and T. Park, Controlling superconductivity by tunable quantum critical points, Nat Commun. 6 (2015), pp. 6433-1–6433-6.
  • W. Wu, L. Cheng, K. Matsubayashi, P. Kong, F. Lin, C. Jin, N. Wang, Y. Uwatoko, and J. Luo, Superconductivity in the vicinity of antiferromagnetic order in CrAs, Nat. Commun. 5 (2014), pp. 5508-1–5508-5.
  • R.H. Wilson and J.S. Kasper, The crystal structure of MnAs above 40°C, Acta Crystallogr. 17 (1964), pp. 95–101.
  • H. Kotegawa, S. Nakahara, H. Tou, and H. Sugawara, Superconductivity of 2.2 K under pressure in Helimagnet CrAs, J. Phys. Soc. Jpn. 83 (2014), pp. 093702-1–093702-4.
  • H. Kotegawa, S. Nakahara, R. Akamatsu, H. Tou, H. Sugawara, and H. Harima, Detection of an unconventional superconducting phase in the vicinity of the strong first-order magnetic transition in CrAs using 75As-nuclear quadrupole resonance, Phys. Rev. Lett. 114 (2015), pp. 117002-1–117002-5.
  • R. Khasanov, Z. Guguchia, I. Eremin, H. Luetkens, A. Amato, P.K. Biswas, C. Rüegg, M.A. Susner, A.S. Sefat, N.D. Zhigadlo, and E. Morenzoni, Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs, Sci. Rep. 5 (2015), pp. 13788-1–13788-8.
  • L. Keller, J.S. White, M. Frontzek, P. Babkevich, M.A. Susner, Z.C. Sims, A.S. Sefat, H.M. Rønnow, and C. Rüegg, Pressure dependence of the magnetic order in CrAs: A neutron diffraction investigation, Phys. Rev. B 91 (2015), pp. 020409-1–020409-5(R).
  • E. Şaşioglu, I. Galanakis, L.M. Sandratskii, and P. Bruno, Stability of ferromagnetism in the half-metallic pnictides and similar compounds: a first-principles study, J. Phys.: Condens. Matter 17 (2005), pp. 3915–3930; M. Shirai, Possible half-metallic ferromagnetism in zinc blende CrSb and CrAs, J. Appl. Phys. 93 (2010), pp. 6844--6846.
  • G. Kresse and J. Furthmüller, Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mat. Sci. 6 (1996), pp. 15–50.
  • G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59 (1999), pp. 1758–1775.
  • H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976), pp. 5188–5192.
  • J.P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B 23 (1981), pp. 5048–5079.
  • D.M. Ceperley and B.J. Alder, Ground state of the electron gas by a Stochastic method, Phys. Rev. Lett. 45 (1980), pp. 566–569.
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996), pp. 3865–3869.
  • C. Autieri, Antiferromagnetic and xy ferro-orbital order in insulating SrRuO3 thin films with SrO termination, J. Phys. Condens. Matter. 28 (2016), pp. 426004–11.
  • J. Paier, M. Marsman, and G. Kresse, Why does the B3LYP hybrid functional fail for metals?, J. Chem. Phys. 127 (2007), pp. 024103-1–024103-10.
  • M. Yazdani-Kachoei, S. Jalali-Asadabadi, I. Ahmad, and K. Zarringhalam, Pressure dependency of localization degree in heavy fermion Celn3: A density functional theory analysis, Sci. Rep. 6 (2016), pp. 31734-1–31734-17.
  • P.E. Blöchl, O. Jepsen, and O.K. Andersen, Improved tetrahedron method for Brillouin-zone integrations, Phys. Rev. B 49 (1994), pp. 16223–16233.
  • N. Marzari and D. Vanderbilt, Maximally localized generalized Wannier functions for composite energy bands, Phys. Rev. B 56 (1997), pp. 12847–12865.
  • I. Souza, N. Marzari, and D. Vanderbilt, Maximally localized Wannier functions for entangled energy bands, Phys. Rev. B 65 (2001), pp. 035109-1–035109-13.
  • A.A. Mostofi, J.R. Yates, Y.S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, Wannier90: A tool for obtaining maximally-localised Wannier functions, Comput. Phys. Comm. 178 (2008), pp. 685–699.
  • Y. Shen, Q. Wang, Y. Hao, B. Pan, Y. Feng, Q. Huang, L.W. Harriger, J.B. Leao, Y. Zhao, R.M. Chisnell, J.W. Lynn, H. Cao, J. Hu, and J. Zhao, Structural and magnetic phase diagram of CrAs and its relationship with pressure-induced superconductivity, Phys. Rev. B 93 (2016), pp. 060503-1–060503-6(R).
  • W. Wu, X. Zhang, Z. Yin, P. Zheng, N. Wang, and J. Luo, Low temperature properties of pnictide CrAs single crystal, Sci. China 53 (2010), pp. 1207–1211.
  • B.S. Wang, K.C. Zhang, and Y. Liu, First-principles study the electronic and structural properties of chromium arsenide, (2015). Available at arXiv:1507.03071v1.
  • S.J. Hashemifar, P. Kratzer, and M. Scheffler, Stable structure and magnetic state of ultrathin CrAs films on GaAs(001): A density functional theory study, Phys. Rev. B 82 (2010), pp. 214417-1–214417-9.
  • F.D. Murnaghan, The compressibility of media under extreme pressures, Proc. Natl. Acad. Sci. USA 30 (1944), pp. 244–247; F. Birch, Finite elastic strain of cubic crystals, Phys. Rev. 71 (1947), pp. 809--824.
  • J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces, Phys. Rev. Lett. 100 (2008), pp. 136406-1–136406-4.
  • W. Setyawan and S. Curtarolo, High-throughput electronic band structure calculations: Challenges and tools, Comp. Mat. Sci. 49 (2010), pp. 299–312.
  • A. Yanase and A. Hasegawa, Electronic structure of MnP, J. Phys. C: Solid St. Phys. 13 (1980), pp. 1989–1993.
  • A. Subedi, L. Zhang, D.J. Singh, and M.H. Du, Density functional study of FeS, FeSe, and FeTe: Electronic structure, magnetism, phonons, and superconductivity, Phys. Rev. B 78 (2008), pp. 134514-1–134514-6.
  • C. Autieri, E. Koch, and E. Pavarini, Mechanism of structural phase transitions in KCrF3, Phys. Rev. B 89 (2014), pp. 155109-1–155109-8.
  • A. Fert and P.M. Levy, Role of anisotropic exchange interactions in determining the properties of spin-glasses, Phys. Rev. Lett. 44 (1980), pp. 1538–1541.
  • K.V. Shanavas and S. Satpathy, Electronic structure and the origin of the Dzyaloshinskii-Moriya interaction in MnSi, Phys. Rev. B 93 (2016), pp. 195101-1–195101-8.
  • J.M. Pizarro, M.J. Calderón, J. Liu, M.C. Muñoz, and E. Bascones, Strong correlations and the search for high-TC superconductivity in chromium pnictides and chalcogenides, Phys. Rev. B 95 (2017), pp. 075115-1–075115-8.
  • J.M. Dickey and A. Paskin, Size and surface effects on the phonon properties of small particles, Phys. Rev. B 1 (1970), pp. 851–857.
  • M. Strongin, R.S. Thompson, O.F. Kammerer, and J.E. Crow, Destruction of superconductivity in disordered near-monolayer films, Phys. Rev. B 1 (1970), pp. 1078–1090.
  • W.-H. Li, C.C. Yang, F.C. Tsao, and K.C. Lee, Quantum size effects on the superconducting parameters of zero-dimensional Pb nanoparticles, Phys. Rev. B 68 (2003), pp. 184507-1–184507-6.
  • S. Bose, P. Raychaudhuri, R. Banerjee, P. Vasa, and P. Ayyub, Mechanism of the size dependence of the superconducting transition of nanostructured Nb, Phys. Rev. Lett. 95 (2005), pp. 147003-1–147003-4.
  • C. Autieri, M. Cuoco, and C. Noce, Collective properties of eutectic ruthenates: Role of nanometric inclusions, Phys. Rev. B 85 (2012), pp. 075126-1–075126-9.
  • A. Aperis, P. Maldonado, and P. Oppeneer, Ab initio theory of magnetic-field-induced odd-frequency two-band superconductivity in MgB2, Phys. Rev. B 92 (2015), pp. 054516-1–054516-8.
  • C. Autieri, G. Cuono, F. Forte, and C. Noce, Low energy bands and transport properties of chromium arsenide, J. Phys.: Condens. Matter 29 (2017), pp. 22404-1–22404-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.