497
Views
29
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Non-singular dislocation continuum theories: strain gradient elasticity vs. Peierls–Nabarro model

Pages 3246-3275 | Received 03 May 2017, Accepted 13 Aug 2017, Published online: 21 Sep 2017

References

  • M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Clarendon Press, Oxford, 1954.
  • T. Egami, K. Maeda, and V. Vitek, Structural defects in amorphous solids: A computer simulation study, Phil. Mag. A 41 (1980), pp. 883–901.
  • E.B. Tadmor and R.E. Miller, Modeling Materials: Continuum, Atomistic and Multiscale Techniques, Cambridge University Press, Cambridge, 2011.
  • V.V. Bulatov and W. Cai, Computer Simulations of Dislocations, Oxford University Press, Oxford, 2006.
  • H. Koizumi, H.O.K. Kirchner, and T. Suzuki, Construction of the Peierls-Nabarro potential of a dislocation from interatomic potentials, Phil. Mag. 86 (2006), pp. 3835–3846.
  • R.E. Peierls, The size of a dislocation, Proc. Phys. Soc. (London) 54 (1940), pp. 34–37.
  • F.R.N. Nabarro, Dislocations in a simple cubic lattice, Proc. Phys. Soc. (London) 59 (1947), pp. 256–272.
  • G. Leibfried and K. Lücke, Über das Spannungsfeld einer Versetzung, Z. Phys. 126 (1949), pp. 450–464.
  • G. Leibfried and H.-D. Dietze, Zur Theorie der Schraubenversetzung, Z. Phys. 126 (1949), pp. 790–808.
  • G. Leibfried and H.-D. Dietze, Versetzungsstrukturen in kubisch-flächenzentrierten Kristallen. I, Z. Phys. 131 (1951), pp. 113–129.
  • H.-D. Dietze, Versetzungsstrukturen in kubisch-flächenzentrierten Kristallen. II, Z. Phys. 131 (1952), pp. 156–169.
  • A. Seeger, Theorie der Gitterfehlstellen, in Handbuch der Physik, Vol. VII/1, S. Flügge, ed., Springer, Berlin, 1955, pp. 383–665.
  • G. Schoeck, The core structure of dislocations in Al: A critical assessment, Mater. Sci. Eng. A. 333 (2002), pp. 390–396.
  • G. Schoeck, Atomic dislocation core parameters, Phys. Status Solidi (b) 247 (2010), pp. 265–268.
  • C.L. Lee and S. Li, A half-space Peierls-Nabarro model and the mobility of screw dislocations in a thin film, Acta Mater. 55 (2007), pp. 2149–2157.
  • C.L. Lee and S. Li, The size effect of thin films on the Peierls stress of edge dislocations, Math. Mech. Solids 13 (2008), pp. 316–335.
  • D. Ferré, P. Carrez, and P. Cordier, Modeling dislocation cores in SeTiO3 using the Peierls-Nabarro model, Phys. Rev. B 77 (2008), p. 014106.
  • A.M. Walker, P. Carrez, and P. Cordier, Atomic-scale models of dislocation cores in minerals: Progress and prospects, Mineral. Mag. 74 (2010), pp. 381–413.
  • V.A. Lubarda and X. Markenscoff, Variable core model and the Peierls stress for the mixed (screw-edge) dislocation, Appl. Phys. Lett. 89 (2006), p. 151923.
  • V.A. Lubarda and X. Markenscoff, Configurational force on a lattice dislocation and the Peierls stress, Arch. Appl. Mech. 77 (2007), pp. 147–154.
  • S. Li and G. Wang, Introduction to Micromechanics and Nanomechanics, World Scientific, Singapore, 2008.
  • R. Miller, R. Phillips, G. Beltz, and M. Ortiz, A non-local formulation of the Peierls dislocation model, J. Mech. Phys. Solids 46 (1998), pp. 1845–1867.
  • R.C. Picu, The Peierls stress in non-local elasticity, J. Mech. Phys. Solids 50 (2002), pp. 717–735.
  • R.D. Mindlin, Micro-structure in linear elasticity, Arch. Rat. Mech. Anal. 16 (1964), pp. 51–78.
  • R.D. Mindlin, Second gradient of strain and surface-tension in linear elasticity, Int. J. Solids Struct. 1 (1965), pp. 417–438.
  • R.D. Mindlin and N.N. Eshel, On first strain gradient theory in linear elasticity, Int. J. Solids Struct. 4 (1968), pp. 109–124.
  • H.M. Shodja, A. Zaheri, and A. Tehranchi, Ab initio calculations of characteristic lengths of crystalline materials in first strain gradient elasticity, Mech. Mater. 61 (2013), pp. 73–78.
  • R.A. Toupin and D.C. Grazis, Surface effects and initial stress in continuum and lattice models of elastic crystals, in Proceedings of the International Conference on Lattice Dynamics, R.F. Wallis, ed., Pergamon Press, Copenhagen, 1964, pp. 597–602.
  • N.C. Admal, J. Marian, and G. Po, The atomistic representation of first strain-gradient elastic tensors, J. Mech. Phys. Solids 99 (2017), pp. 93–115.
  • M. Lazar and G.A. Maugin, Nonsingular stress and strain fields of dislocations and disclinations in first strain gradient elasticity, Int. J. Engng. Sci. 43 (2005), pp. 1157–1184.
  • M. Lazar, G.A. Maugin, and E.C. Aifantis, On dislocations in a special class of generalized elasticity, Phys. Status Solidi (b) 242 (2005), pp. 2365–2390.
  • M. Lazar and G.A. Maugin, Dislocations in gradient elasticity revisited, Proc. R. Soc. Lond. A 462 (2006), pp. 3465–3480.
  • M. Lazar, G.A. Maugin, and E.C. Aifantis, Dislocations in second strain gradient elasticity, Int. J. Solids Struct. 43 (2006), pp. 1787–1817.
  • M. Lazar, The fundamentals of non-singular dislocations in the theory of gradient elasticity: Dislocation loops and straight dislocations, Int. J. Solids Struct. 50 (2013), pp. 352–362.
  • M. Lazar, On gradient field theories: Gradient magnetostatics and gradient elasticity, Phil. Mag. 94 (2014), pp. 2840–2874.
  • M.Yu. Gutkin, Elastic behaviour of defects in nanomaterials I, Rev. Adv. Mater. Sci. 13 (2006), pp. 125–161.
  • M. Lazar, Non-singular dislocation loops in gradient elasticity, Phys. Lett. A 376 (2012), pp. 1757–1758.
  • G. Po, M. Lazar, D. Seif, and N. Ghoniem, Singularity-free dislocation dynamics with strain gradient elasticity, J. Mech. Phys. Solids 68 (2014), pp. 161–178.
  • G. Po, M. Lazar, N.C. Admal, and N. Ghoniem, A non-singular theory of dislocations in anisotropic crystals, Eprint Archive (2017). Available at https://arxiv.org/abs/1706.00828
  • M.Yu. Gutkin and E.C. Aifantis, Dislocations in gradient elasticity, Scripta Mater. 40 (1999), pp. 559–566.
  • M. Lazar, E. Agiasofitou, and D. Polyzos, On gradient enriched elasticity theories: A reply to “Comment on ‘On non-singular crack fields in Helmholtz type enriched elasticity theories’" and important theoretical aspects, Eprint Archive (2015). Available at https://arxiv.org/abs/1504.00869
  • W. Cai, A. Arsenlis, C.R. Weinberger, and V.V. Bulatov, A non-singular continuum theory of dislocations, J. Mech. Phys. Solids 54 (2006), pp. 561–587.
  • A.C. Eringen, Nonlocal Continuum Field Theories, Springer, New York, 2002.
  • D.G.B. Edelen, A correct, globally defined solution of the screw dislocation problem in the gauge theory of defects, Int. J. Engng. Sci. 34 (1996), pp. 81–86.
  • M. Lazar, An elastoplastic theory of dislocations as a physical field theory with torsion, J. Phys. A: Math. Gen. 35 (2002), pp. 1983–2004.
  • M. Lazar, A nonsingular solution of the edge dislocation in the gauge theory of dislocations, J. Phys. A: Math. Gen. 36 (2003), pp. 1415–1437.
  • M. Lazar, Dislocations in the field theory of elastoplasticity, Comput. Mater. Sci. 28 (2003), pp. 419–428.
  • R. deWit, Theory of disclinations IV, J. Res. Nat. Bur. Stand (US). 77A (1973), pp. 607–658.
  • J.P. Hirth and J. Lothe, Theory of Dislocations, Wiley, New York, 1968.
  • R.W. Lardner, Mathematical Theory of Dislocations and Fracture, University of Toronto Press, Toronto, 1974.
  • J.D. Eshelby, Lecture on the elastic energy-momentum tensor, 1977, in Lecture Notes (handwritten) Collected Works of J.D. Eshelby X. Markenscoff and A. Gupta, eds., Springer, Dordrecht, 1977, p. 2006.
  • L. Ni and X. Markenscoff, The self-force and effective mass of a generally accelerating dislocation I: Screw dislocation, J. Mech. Phys. Solids 56 (2008), pp. 1348–1379.
  • J. Weertman and J.R. Weertman, Moving dislocations, in Dislocations in Solids, Vol. 3, F.R.N. Nabarro, ed., North-Holland, Amsterdam, 1980, pp. 1–59.
  • S. Kret, P. Dłużewski, P. Dłużewski, and W. Sobczak, Measurement of the dislocation core distribution by digital processing of high transmission electron microscopy micrographs: a new technique for studying defects, J. Phys.: Condens. Matter 12 (2000), pp. 10313–10318.
  • K.M. Davoudi, H.M. Davoudi, and E.C. Aifantis, Nanomechanics of a screw dislocation in a functionally graded material using the theory of gradient elasticity, J. Mech. Behav. Mater. 21 (2013), pp. 187–194.
  • F.R.N. Nabarro, Mathematical theory of stationary dislocations, Adv. Phys. 1 (1952), pp. 269–394.
  • F.R.N. Nabarro, Theory of Crystal Dislocations, Oxford University Press, Oxford, 1967.
  • C. Teodosiu, Elastic Models of Crystal Defects, Springer, Berlin, 1982.
  • M. Lazar and G.A. Maugin, A note on line forces in gradient elasticity, Mech. Res. Commun. 33 (2006), pp. 674–680.
  • C.S. Hartley and Y. Mishin, Characterization and visualization of the lattice misfit associated with dislocation cores, Acta Mater. 53 (2005), pp. 1313–1321.
  • I.M. Gel’fand and G.E. Shilov, Generalized Functions, Vol. I, Academic, New York, 1964.
  • R.P. Kanwal, Generalized Functions: Theory and Applications, 3rd ed., Birkhäuser, Boston, 2004.
  • E. Zauderer, Partial Differential Equations of Applied Mathematics, John Wiley & Sons Inc, New York, 1983.
  • V.S. Vladimirow, Equations of Mathematical Physics, Dekker, New York, 1971.
  • E. Kröner, Kontinuumstheorie der Versetzungen und Eigenspannungen, Springer, Berlin, 1958.
  • T. Mura, Micromechanics of Defects in Solids, 2nd ed., Martinus Nijhoff, Dordrecht, 1987.
  • H.M. Shodja, and A. Tehranchi, A formulation for the characteristic lengths of fcc materials in first strain gradient elasticity via Sutton-Chen potential, Phil. Mag. 90 (2010), pp. 1893–1913; Corrigendum, Phil. Mag. 92 (2012), pp. 1170--1171.
  • P.H. Dederichs and G. Leibfried, Elastic Green’s function for anisotropic cubic crystals, Phys. Rev. 188 (1969), pp. 1175–1183.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.