642
Views
37
CrossRef citations to date
0
Altmetric
Part A: Materials Science

A general model for hydrogen trapping at the inclusion-matrix interface and its relation to crack initiation

&
Pages 3296-3316 | Received 19 Apr 2017, Accepted 01 Sep 2017, Published online: 21 Sep 2017

References

  • T. Boukharouba, M. Elboujdaini, and G. Pluvinage (eds.), Damage and Fracture Mechanics - Failure Analysis of Engineering Materials and Structures, Springer, Dordrecht, 2009.
  • S. Fujita and Y. Murakami, A new nonmetallic inclusion rating method by positive use of hydrogen embrittlement phenomenon. Metall. Mater. Trans. A 44 (2013), pp. 303–322.10.1007/s11661-012-1376-1
  • T. Otsuka and T. Tanabe, Hydrogen diffusion and trapping process around MnS precipitates in αFe examined by tritium autoradiography, J. Alloys Comp. 446–447 (2007), pp. 655–659.10.1016/j.jallcom.2007.02.005
  • H. Hanada, T. Otsuka, H. Nakashima, S. Sasaki, M. Hayakawa, and M. Sugisaki, Profiling of hydrogen accumulation in a tempered martensite microstructure by means of tritium autoradiography. Scr. Mater. 53 (2005), pp. 1279–1284.
  • G.M. Pressouyre and I.M. Bernstein, An example of the effect of hydrogen trapping on hydrogen embrittlement, Metall. Trans. A 12 (1981), pp. 835–844.10.1007/BF02648348
  • M.C. Tiegel, M.L. Martin, A.K. Lehmberg, M. Deutges, C. Borchers, and R. Kirchheim, Crack and blister initiation and growth in purified iron due to hydrogen loading, Acta Mater. 115 (2016), pp. 24–34.10.1016/j.actamat.2016.05.034
  • T.Y. Jin, Z.Y. Liu, and Y.F. Cheng, Effect of non-metallic inclusions on hydrogen-induced cracking of API5L X100 steel, Int. J. Hydrogen Energy 35 (2010), pp. 8014–8021.10.1016/j.ijhydene.2010.05.089
  • D.I. Kwon and R.J. Asaro, Hydrogen-assisted ductile fracture in spheroidized 1518 steel, Acta Metall. Mater. 38 (1990), pp. 1595–1606.10.1016/0956-7151(90)90127-3
  • E. Schiapparelli, S. Prado, J.J. Tiebas, and J. Garibaldi, Relation between different inclusion-matrix interfaces in steels and the susceptibility to hydrogen embrittlement, J. Mater. Sci. 27 (1992), pp. 2053–2060.10.1007/BF01117917
  • G.M. Pressouyre and I.M. Bernstein, Quantitative analysis of hydrogen trapping, Metall. Trans. A 9 (1978), pp. 1571–1580.10.1007/BF02661939
  • S.M. Lee and J.Y. Lee, The effect of the interface character of TiC particles on hydrogen trapping in steel, Acta Metall. 35 (1987), pp. 2695–2700.10.1016/0001-6160(87)90268-9
  • F.G. Wei and K. Tsuzaki, Quantitative analysis on hydrogen trapping of TiC particles in steel, Metall. Mater. Trans. A 37 (2006), pp. 331–353.10.1007/s11661-006-0004-3
  • J. Takahashi, K. Kawakami, Y. Kobayashi, and T. Tarui, The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography, Scripta Mater. 63 (2010), pp. 261–264.10.1016/j.scriptamat.2010.03.012
  • G.M. Evans and E.C. Rollason, Influence of non-metallic inclusions on apparent diffusion of hydrogen in ferrous materials, J. Iron Steel Inst. 207 (1969), pp. 1484–1490.
  • O. Madelen, I. Todoshchenko, Y. Yagodzinskyy, T. Saukkonen, and H. Hanninen, Role of nonmetallic inclusions in hydrogen embrittlement of high-strength carbon steels with different microalloying, Metall. Mater. Trans. A 45 (2014), pp. 4742–4747.
  • S. Yamasaki and H.K.D.H. Bhadeshia, M4C3 precipitation in Fe–C–Mo–V steels and relationship to hydrogen trapping, Proc. R. Soc. A 462 (2006), pp. 2315–2330.10.1098/rspa.2006.1688
  • B.A. Szost, R.H. Vegter, and P.E.J. Rivera-Díaz-del-Castillo, Hydrogen-trapping mechanisms in nanostructured steels, Metall. Mater. Trans. A 44 (2013), pp. 4542–4550.10.1007/s11661-013-1795-7
  • R.S. Treseder, Oil industry experience with hydrogen embrittlement and stress corrosion cracking, in Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, R.W. Staehle, J. Hochman, R.D. McCrigth, and J.E. Slater, eds., NACE, Houston, TX, 1977, pp. 147–161.
  • J.O’M. Bockris, W. Beck, M.A. Genshaw, P.K. Subramanyan, and F.S. Williams, The effect of stress on the chemical potential of hydrogen in iron and steel, Acta Metall. 19 (1971), pp. 1209–1218.
  • T. Furuhara, T. Kimori, and T. Maki, Crystallography and interphase boundary of (MnS plus VC) complex precipitate in austenite, Metall. Mater. Trans. A 37 (2006), pp. 951–959.10.1007/s11661-006-0068-0
  • J.W. Matthews, Misfit dislocations, in Dislocations in Solids, Vol. 2, F.R.N. Nabarro, ed., North-Holland Publishing Co., Amsterdam, 1979.
  • M. Kato, T. Fujii, and S. Onaka, Elastic strain energies of sphere, plate and needle inclusions, Mater. Sci. Eng. A 211 (1996), pp. 95–103.10.1016/0921-5093(95)10091-1
  • S.S. Babu, E.D. Specht, S.A. David, E. Karapetrova, P. Zschack, M. Peet, and H.K.D.H. Bhadeshia, In-situ observations of lattice parameter fluctuations in austenite and transformation to bainite, Metall. Mater. Trans. A 36 (2005), pp. 3281–3289.10.1007/s11661-005-0002-x
  • J.S. Sweeney and D.L. Heinz, Compression of α-MnS (Alabandite) and a new high-pressure phase, Phys. Chem. Miner. 20 (1993), pp. 63–68.
  • Y.F. Yang, H.Y. Wang, J. Zhang, R.Y. Zhao, Y.H. Liang, and Q.C. Jiang, Lattice parameter and stoichiometry of TiCx produced in the Ti-C and Ni-Ti-C systems by self-propagating high-temperature synthesis, J. Am. Ceram. Soc. 91 (2008), pp. 2736–2739.10.1111/jace.2008.91.issue-8
  • L.S. Negi, Strength of Materials, Tata McGraw Hill, New Delhi, 2008.
  • L.C. Hwang and T.P. Perng, Hydrogen transport in ferritic stainless steel under elastic stress, Mater. Chem. Phys. 36 (1994), pp. 231–235.10.1016/0254-0584(94)90034-5
  • O. Kavcı and S. Cabuk, First-principles study of structural stability, elastic and dynamical properties of MnS, Comp. Mater. Sci. 95 (2014), pp. 99–105.10.1016/j.commatsci.2014.07.022
  • R. Chang and L. Graham, Low-temperature elastic properties of ZrC and TiC, J. Appl. Phys. 37 (1966), pp. 3778–3783.10.1063/1.1707923
  • V.V. Bulatov, J.F. Justo, W. Cai, and S. Yip, Kink asymmetry and multiplicity in dislocation cores, Phys. Rev. Lett. 79 (1997), pp. 5042–5045.10.1103/PhysRevLett.79.5042
  • K. Yamamoto, H. Yamamura, and Y. Suwa, Behavior of non-metallic inclusions in steel during hot deformation and the effects of deformed inclusions on local ductility, ISIJ Int. 51 (2011), pp. 1987–1994.10.2355/isijinternational.51.1987
  • H. Sawada, S. Taniguchi, K. Kawakami, and T. Ozaki, First-principles study of interface between iron and precipitate, 3rd World Congress on Integrated Computational Materials Engineering, Colorado Springs, CO, 2015.
  • G.R. Caskey, Hydrogen effects in stainless steels, in Hydrogen Degradation of Ferrous Alloys, R.A. Oriani, J.P. Hirth, and M. Smialowski, eds., Noyes Publications, Saddle River, NJ, 1985, pp. 252–258.
  • I.A. Krutikova, L.M. Panfilova, and L.A. Smirnov, Study of the tendency towards delayed failure of high-strength bolt steels microalloyed with vanadium and nitrogen, Metallurgist 54 (2010), pp. 48–56.10.1007/s11015-010-9253-x
  • H.G. Lee and J.Y. Lee, Hydrogen trapping by TiC particles in iron, Acta Metall. 32 (1984), pp. 131–136.10.1016/0001-6160(84)90210-4
  • E.R. de Schiapparelli, On the effect of non-metallic inclusions on hydrogen damage in aluminium-killed steel, J. Mater. Sci. 23 (1988), pp. 3338–3341.10.1007/BF00551315
  • J.R. Scully, G.A. Young, and S.W. Smith, Hydrogen embrittlement of aluminum and aluminum-based alloys, in Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, R.P. Gangloff and B.P. Somerday, eds., Woodhead Publishing Ltd., Cambridge, 2012, pp. 707–768.10.1533/9780857093899.3.707
  • J.L. Lee and J.Y. Lee, Hydrogen trapping in AISI 4340 steel, Metal Sci. 17 (1983), pp. 426–432.10.1179/030634583790420619
  • A. Van der Ven and G. Ceder, The thermodynamics of decohesion, Acta Mater. 52 (2004), pp. 1223–1235.10.1016/j.actamat.2003.11.007
  • M.W.D. Van der Burg, E. van der Giessen, and R.C. Brouwer, Investigation of hydrogen attack in 2.25Cr-1Mo steels with a high-triaxiality void growth model, Acta Mater. 44 (1996), pp. 505–518.10.1016/1359-6454(95)00203-0
  • X.C. Ren, Q.J. Zhou, G.B. Shan, W.Y. Chu, J.X. Li, Y.J. Su, and L.J. Qiao, A nucleation mechanism of hydrogen blister in metals and alloys, Metall, Mater, Trans, A 39 (2008), pp. 87–97.10.1007/s11661-007-9391-3
  • C.K. Gupta, Chemical Metallurgy, Wiley-VCH, Weinheim, 2003.10.1002/3527602003
  • P. Novak, R. Yuan, B.P. Somerday, P. Sofronis, and R.O. Ritchie, A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel, J. Mech. Phys. Solids 58 (2010), pp. 206–226.10.1016/j.jmps.2009.10.005
  • W.F. Hosford, Mechanical Behavior of Materials, Cambridge University Press, Cambridge, 2005.10.1017/CBO9780511810930
  • Y. Murakami, T. Kanezaki, and Y. Mine, Hydrogen effect against hydrogen embrittlement, Metall. Mater. Trans. A 41 (2010), pp. 2548–2562.10.1007/s11661-010-0275-6
  • Y. Seitzman, G.L. Kulcinski, and R.A. Dodd, Oxygen effects on void stabilization in stainless steel, in Radiation-Induced Changes in Microstructure: 13th Int. Symp. (Part 1), ASTM STP 955, F.A. Garner, N.H. Packan, and A.S. Kumar, eds., ASTM, Philadelphia, 1987, pp. 279–286.
  • A.A. Benzerga, J. Besson, and A. Pineau, Anisotropic ductile fracture Part I: experiments, Acta Mater. 52 (2004), pp. 4623–4638.10.1016/j.actamat.2004.06.020
  • T.V. Venkatasubramanian and T.J. Baker, Role of elongated MnS inclusions in hydrogen embrlttlement of high-strength steels, Metal Sci. 16 (1982), pp. 543–554.10.1179/030634582790427154
  • H.G. Nelson and J.E. Stein, Gas-phase hydrogen permeation through alpha iron, 4130 steel, and 304 stainless steel from less than 100 °C to near 600 °C, NASA Technical Note, NASA TN D-7265, 1973.
  • A. Kelly, W.R. Tyson, and A.H. Cottrell, Ductile and brittle crystals, Philos. Mag. 15 (1967), pp. 567–586.10.1080/14786436708220903
  • T.W. Clyne and P.J. Withers, An Introduction to Metal Matrix Composites, Cambridge University Press, Cambridge, 1993.10.1017/CBO9780511623080

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.