413
Views
10
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Gap opening and large spin–orbit splitting in (M = Mo,W; X = S,Se,Te) from the interplay between crystal field and hybridisations: insights from ab-initio theory

, &
Pages 3381-3395 | Received 24 Jan 2017, Accepted 19 Sep 2017, Published online: 06 Oct 2017

References

  • K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Gregorieva, and A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004), pp. 666–669.
  • K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkivich, S.V. Morozov, and A.K. Geim, Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. USA 102 (2005), pp. 10451–10453.
  • S. Lebegue and O. Eriksson, Electronic structure of two-dimensional crystals from ab initio theory, Phys. Rev. B 79 (2009), p. 115409.
  • K.F. Mak, C. Lee, J. Hone, J. Shan, and T.F. Heinz, Atomically thin Mos2: a new direct-gap semiconductor, Phys. Rev. Lett. 105 (2010), p. 136805.
  • Q. Yue, J. Kang, Z. Shao, X. Zhang, S. Chang, G. Wang, S. Qina, and J. Li, Mechanical and electronic properties of monolayer Mos2 under elastic strain, Phys. Lett. A 376 (2012), pp. 1166–1170.
  • A.P. Nayak, S. Bhattacharya, J. Zhu, J. Liu, X. Wu, T. Pandey, C. Jin, A.K. Singh, D. Akinwande, and J.-F. Lin, Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide, Nat. Commun. 5 (2012), p. 3731.
  • B. Radisavljevic and A. Kis, Mobility engineering and a metalinsulator transition in monolayer Mos2, Nat. Mater. 12 (2013), pp. 815–820.
  • M. Peña-Álvarez, E. Corro, Á. Morales-García, L. Kavan, M. Kalbac, and O. Frank, Single layer molybdenum disulfide under direct out-of-plane compression: low-stress band-gap engineering, Nano Lett. 15 (2015), pp. 3139–3146.
  • S. Bhattacharyya and A.K. Singh, Semiconductor-metal transition in semiconducting bilayer sheets of transition-metal dichalcogenides, Phys. Rev. B 86 (2012), p. 075454.
  • F. Zahid, L. Liu, Y. Zhu, J. Wang, and H. Guo, A generic tight-binding model for monolayer, bilayer and bulk Mos2, AIP Adv. 3 (2013), pp. 052111–052116.
  • H. Rostami, A.G. Moghaddam, and R. Asgari, Effective lattice Hamiltonian for monolayer Mos2: Tailoring electronic structure with perpendicular electric and magnetic fields, Phys. Rev. B 88 (2013), p. 085440.
  • E. Ridolfi, D. Le, T.S. Rahman, E.R. Mucciolo, and C.H. Lewenkopf, A tight-binding model for Mos2 monolayers, J. Phys. Condens. Matter. 27 (2015), p. 365501.
  • K.V. Shanavas and S. Satpathy, Effective tight-binding model for MX2 under electric and magnetic fields Phys, Rev. B 91 (2015), p. 235145.
  • E. Cappelluti, R. Roldán, J.A. Silva-Guillén, P. Ordejón, and F. Guinea, Tight-binding model and direct-gap/indirect-gap transition in single-layer and multilayer Mos2, Phys. Rev. B 88 (2013), p. 075409.
  • G.-B. Liu, W.-Y. Shan, Y. Yao, W. Yao, and D. Xiao, Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides, Phys. Rev. B 88 (2013), p. 085433.
  • D. Xiao, G.B. Liu, W. Feng, X. Xu, and W. Yao, Coupled spin and valley physics in monolayers of Mos2 and other group-VI dichalcogenides, Phys. Rev. Lett. 108 (2012), p. 196802.
  • A. Kormányos, V. Zólyomi, N.D. Drummond, P. Rakyta, G. Burkard, and V.I. Fal’ko, Monolayer MoS2: Trigonal warping, the Mos2 valley, and spin-orbit coupling effects, Phys. Rev. B 88 (2013), p. 045416.
  • A. Kormányos, G. Burkard, M. Gmitra, J. Fabian, V. Zólyomi, N.D. Drummond, and Vladimir Fal’ko, k.p theory for two-dimensional transition metal dichalcogenide semiconductors, 2D Mater. 2 (2015), p. 022001.
  • G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mat. Sci. 6 (1996), pp. 15–50.
  • G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59 (1999), p. 1758.
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996), p. 3865.
  • N. Marzari and D. Vanderbilt, Maximally localized generalized Wannier functions for composite energy bands, Phys. Rev. B 56 (1997), p. 12847.
  • I. Souza, N. Marzari, and D. Vanderbilt, Maximally localized Wannier functions for entangled energy bands, Phys. Rev. B 65 (2001), p. 035109.
  • A.A. Mostofi, J.R. Yates, Y.S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, Wannier90: A tool for obtaining maximally-localised wannier functions, Comput. Phys. Comm. 178 (2008), pp. 685–699.
  • A. Kumar and P.K. Ahluwalia, Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from ab-initio theory: new direct band gap semiconductors, Eur. Phys. J. B 85 (2012), p. 186.
  • J. Zhu and U. Schwingenschlögl, Stability and electronic properties of silicene on Mos2, J. Mater. Chem. C 3 (2015), pp. 3946–3953.
  • S. Haldar, P. Srivastava, O. Eriksson, P. Sen, and B. Sanyal, Designing fe nanostructures at graphene/h-BN interfaces, J. Phys. Chem. C 117 (2013), pp. 21763–21771.
  • S. Haldar, H. Vovusha, M. Kumar Yadav, O. Eriksson, and B. Sanyal, Systematic study of structural, electronic, and optical properties of atomic-scale defects in the two-dimensional transition metal dichalcogenides MX2 (M=Mo, W; X=S, Se, Te), Phys. Rev. B 92 (2015), p. 235408.
  • G.F. Koster, J.O. Dimmock, R.G. Wheeler, and H. Statz, Properties of the Thirty-Two Point Groups, MIT Press, Cambridge, 1964.
  • K. Kośmider, J.W. González, and J. Fernández-Rossier, Large spin splitting in the conduction band of transition metal dichalcogenide monolayers, Phys. Rev. B 88 (2013), p. 245436.
  • R. Roldan, M.P. López-Sancho, F. Guinea, E. Cappelluti, J.A. Silva-Guillén, and P. Ordejón, Momentum dependence of spinorbit interaction effects in single-layer and multi-layer transition metal dichalcogenides, 2D Mater. 1 (2014), p. 034003.
  • S. Fang, R. Kuate Defo, N. Shirodkar, S. Lieu, G.A. Tritsaris, and E. Kaxiras, Ab initio tight-binding Hamiltonian for transition metal dichalcogenides, Phys. Rev. B 92 (2015), p. 205108.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.