414
Views
4
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Theory and simulation of coupled grain boundary migration and grain rotation in low angle grain boundaries

&
Pages 3325-3342 | Received 03 Mar 2017, Accepted 15 Sep 2017, Published online: 04 Oct 2017

References

  • Y. Wang, R. Ott, A. Hamza, M. Besser, J. Almer, and M. Kramer, Achieving large uniform tensile ductility in nanocrystalline metals, Phys. Rev. Lett. 105 (2010), p. 215502.
  • K. Kumar, H. Swygenhoven, and S. Suresh, Mechanical behavior of nanocrystalline metals and alloys, Acta Mater. 51 (2003), pp. 5743–5774.
  • Y. Li, D. Raabe, M. Herbig, P.P. Choi, S. Goto, A. Kostka, H. Yarita, C. Borchers, and R. Kirchheim, Segregation stabilizes nanocrystalline bulk steel with near theoretical strength, Phys. Rev. Lett. 113 (2014), p. 106104.
  • E. Hall, The deformation and ageing of mild steel: III discussion of results, Proc. R. Soc. Lond. B Biol. Sci. 64 (1951), pp. 747–753.
  • N. Petch, The cleavage strength of polycrystals, J. Iron Steel Inst. 174 (1953), p. 2528.
  • J. Weertman, Retaining the nano in nanocrystalline alloys, Science 337 (2012), pp. 921–922.
  • H. Gleiter, Nanocrystalline materials, Progr. Mater. Sci. 33 (1989), pp. 223–315.
  • H. Atkinson, Overview no. 65: Theories of normal grain growth in pure single phase systems, Acta Metall. 36 (1988), pp. 469–491.
  • M. Winning, G. Gottstein, and L. Shvindlerman, Migration of grain boundaries under the inf luence of an external shear stress, Mater. Sci. Eng. A 317 (2001), pp. 17–20.
  • J. Zhang, K. Xu, and V. Ji, Strain-energy-driven abnormal grain growth in copper films on silicon substrates, J. Cryst. Growth 226 (2001), pp. 168–174.
  • K. Matsuki, H. Morita, M. Yamada, and Y. Murakami Relative motion of grains during superplastic flow in an Al-9Zn-1 wt. % Mg alloy, Met. Sci. 11 (1977), pp. 163–165.
  • F. Zhou, X. Liao, Y. Zhu, S. Dallek, and E. Lavernia, Microstructural evolution during recovery and recrystallization of a nanocrystalline Al-Mg alloy prepared by cryogenic ball milling, Acta Mater. 51 (2003), pp. 2777–2791.
  • H. Fujita, Direct observation of subgrain-growth of cold-worked aluminium by means of electron-microscopy, J. Phys. Soc. Jpn. 16 (1961), pp. 397–406.
  • K. Harris, V. Singh, and A. King, Grain rotation in thin films of gold, Acta Mater. 46 (1998), pp. 2623–2633.
  • S. Kumar and M. Haque, Fracture testing of nanoscale thin films inside the transmission electron microscope, Int. J. Appl. Mech. 2 (2010), pp. 745–758.
  • S. Bobylev, N. Morozov, and I. Ovid’ko, Cooperative grain boundary sliding and migration process in nanocrystalline solids, Phys. Rev. Lett. 105 (2010), p. 055504.
  • M. Upmanyu, D. Srolovitz, A. Lobkovsky, J. Warren, and W. Carter, Simultaneous grain boundary migration and grain rotation, Acta Mater. 54 (2006), pp. 1707–1719.
  • R. Raj and M. Ashby, On grain boundary sliding and diffusional creep, Metall. Trans. 2 (1971), pp. 1113–1127.
  • J. Cahn and J. Taylor, A unified approach to motion of grain boundaries, relative tangential translation along grain boundaries, and grain rotation, Acta Mater. 52 (2004), pp. 4887–4898.
  • J.M. Tarp and J. Mathiesen, Rotation-limited growth of three-dimensional body-centered-cubic crystals, Phys. Rev. E 92 (2015), p. 012409.
  • N. Bernstein, The in fluence of geometry on grain boundary motion and rotation, Acta Mater. 56 (2008), pp. 1106–1113.
  • Z. Trautt and Y. Mishin, Grain boundary migration and grain rotation studied by molecular dynamics, Acta Mater. 60 (2012), pp. 2407–2424.
  • M. Ke, S. Hackney, W. Milligan, and E. Aifantis, Observation and measurement of grain rotation and plastic strain in nanostructured metal thin films, Nanostr. Mater. 5 (1995), pp. 689–697.
  • P.W. Hoffrogge and L.A. Barrales-Mora, Grain-resolved kinetics and rotation during grain growth of nanocrystalline aluminium by molecular dynamics, Comput. Mater. Sci. 128 (2017), pp. 207–222.
  • F. Mompiou and M. Legros, Quantitative grain growth and rotation probed by in-situ TEM straining and orientation mapping in small grained Al thin films, Scr. Mater. 99 (2015), pp. 5–8.
  • T. Gorkaya, K. Molodov, D. Molodov, and G. Gottstein, Concurrent grain boundary motion and grain rotation under an applied stress, Acta Mater. 59 (2011), pp. 5674–5680.
  • Y. Ivanisenko, L. Kurmanaeva, J. Weissmueller, K. Yang, J. Markmann, H. Rosner, T. Scherer, and H.J. Fecht, Deformation mechanisms in nanocrystalline palladium at large strains, Acta Mater. 57 (2009), pp. 3391–3401.
  • A. Kobler, A. Kashiwar, H. Hahn, and C. Kubel, Combination of insitu straining and ACOM TEM: A novel method for analysis of plastic deformation of nanocrystalline metals, Ultramicroscopy 128 (2013), pp. 68–81.
  • P. Liu, S. Mao, L. Wang, X. Han, and Z. Zhang, Direct dynamic atomic mechanisms of strain-induced grain rotation in nanocrystalline, textured, columnar-structured thin gold, Scr. Mater. 64 (2011), pp. 343–346.
  • A. Haslam, D. Moldovan, V. Yamakov, D. Wolf, S.R. Phillpot, and H. Gleiter, Stress-enhanced grain growth in a nanocrystalline material by molecular-dynamics simulation, Acta Mater. 51 (2003), pp. 2097–2112.
  • A. Haslam, S. Phillpot, D. Wolf, D. Moldovan, and H. Glieter, Mechanisms of grain growth in nanocrystalline fcc metals by molecular-dynamics simulation, Mater. Sci. Eng. A 318 (2001), pp. 293–312.
  • L.A. Barrales-Mora, J.E. Brandenburg, and D.A. Molodov, Impact of grain boundary character on grain rotation, Acta Mater. 80 (2014), pp. 141–148.
  • L.A. Barrales-Mora and D.A. Molodov, Capillarity-driven shrinkage of grains with tilt and mixed boundaries studied by molecular dynamics, Acta Mater. 120 (2016), pp. 179–188.
  • L. Barrales-Mora, D.A. Molodov, and J.E. Brandenburg, Effect of grain boundary geometry on grain rotation during curvature-driven grain shrinkage, Diffusion Foundations 9 (2016), pp. 73–81.
  • L. Wang, J. Teng, P. Liu, A. Hirata, E. Ma, Z. Zhang, M. Chen, and X. Han, Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum, Nature. Comm. 5 (2014), pp. 1–7.
  • N.F. Morozov, I.A. Ovid’ko, A.G. Sheinerman, and E.C. Aifantis, Special rotational deformation as a toughening mechanism in nanocrystalline solids, J. Mech. Phys. Solids 58 (2010), pp. 1088–1099.
  • Y. Liu, J. Zhou, T.D. Shen, and D. Hui, Grain rotation dependent fracture toughness of nanocrystalline materials, Mater. Sci. Eng. A 528 (2011), pp. 7684–7687.
  • S. Kumar, M.A. Haque, and H. Gao, Notch insensitive fracture in nanoscale thin films, Appl. Phys. Lett. 94 (2009), p. 253104.
  • J. Li, Possibility of subgrain rotation during recrystallization, J. Appl. Phys. 33 (1962), pp. 2958–2963.
  • D. Moldovan, D. Wolf, and S. Phillpot, Theory of diffusion-accommodated grain rotation in columnar polycrystalline microstructures, Acta Mater. 49 (2001), pp. 3521–3532.
  • D. Moldovan, D. Wolf, S. Phillpot, and A. Haslam, Role of grain rotation during grain growth in a columnar microstructure by mesoscale simulation, Acta mater. 50 (2002), pp. 3397–3414.
  • A. Vuppuluri and S. Vedantam, Grain growth rate for coupled grain boundary migration and grain rotation in nanocrystalline materials, Philos. Mag. Lett. 96 (2016), pp. 339–346.
  • S. Esedoglu, Grain size distribution under simultaneous grain boundary migration and grain rotation in two dimensions, Comput. Mater. Sci. 121 (2016), pp. 209–216.
  • K.A. Wu and P.W. Voorhees, Phase field crystal simulations of nanocrystalline grain growth in two dimensions, Acta Mater. 60 (2012), pp. 407–419.
  • K. McReynolds, K.A. Wu, and P. Voorhees, Grain growth and grain translation in crystals, Acta Mater. 120 (2016), pp. 264–272.
  • A. Yamanaka, K. McReynolds, and P.W. Voorhees, Phase field crystal simulation of grain boundary motion, grain rotation and dislocation reactions in a bcc bicrystal, Acta Mater. 133 (2017), pp. 160–171.
  • D. Molodov, L. Mora, and J.E. Brandenburg, Grain boundary motion and grain rotation in aluminum bicrystals: Recent experiments and simulations, IOP Conference Series: Materials Science and Engineering 89 (2015), p. 012008.
  • S.Brinckmann, R.Sivanesapillai, and A.Hartmaier, On the formation of vacancies by edge dislocation dipole annihilation in fatigued copper, Int. J. Fatigue. 33 (2011), pp. 1369–1375.
  • A. Kazaryan, Y. Wang, S. Dregia, and B. Patton, Grain growth in anisotropic systems: Comparison of effects of energy and mobility, Acta Mater. 50 (2002), pp. 2491–2502.
  • Y. Huang and F. Humphreys, Subgrain growth and low angle boundary mobility in aluminum crystals of orientation {110}<001>, Acta Mater. 48 (2000), pp. 2017–2030.
  • X. Zeng, Modeling hardening and softening due to high-angle grain boundaries in crystalline solids, 1st ed., Cuvillier Verlag, Göttingen, 2007.
  • D. Fan and L.Q. Chen, Computer simulation of grain growth using a continuum field model, Acta Mater. 45 (1997), pp. 611–622.
  • M. Upmanyu, G. Hassold, A. Kazaryan, E. Holm, Y. Wang, B. Patton, and D. Srolovitz, Boundary mobility and energy anisotropy effects on microstructural evolution during grain growth, Interface Sci. 10 (2002), pp. 201–216.
  • A. Mallick and S. Vedantam, Phase field study of the effect of grain boundary energy anisotropy on grain growth, Comput. Mater. Sci. 46 (2009), pp. 21–25.
  • S. Vedantam and B. Patnaik, Efficient numerical algorithm for multiphase field simulations, Phys. Rev. E 73 (2006), p. 016703.
  • R. Backofen, K. Barmak, K. Elder, and A. Voigt, Capturing the complex physics behind universal grain size distributions in thin metallic films, Acta Mater. 64 (2014), pp. 72–77.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.