1,014
Views
1
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Investigation of stress relaxation mechanisms for ductility improvement in SS316L

, , , , &
Pages 165-181 | Received 11 Aug 2017, Accepted 17 Oct 2017, Published online: 06 Nov 2017

References

  • O. Majidi, F. Barlat, M.G. Lee, and D.J. Kim, Formability of AHSS under an attach-detach forming mode, Steel Res. Int. 86 (2015), pp. 98–109. doi:10.1002/srin.201400001.
  • K. Hariharan, O. Majidi, C. Kim, M.G. Lee, and F. Barlat, Stress relaxation and its effect on tensile deformation of steels, Mater. Des. 52 (2013), pp. 284–288. doi:10.1016/j.matdes.2013.05.088.
  • K. Hariharan, P. Dubey, and J. Jain, Time dependent ductility improvement of stainless steel SS 316 using stress relaxation, Mater. Sci. Eng. A. 673 (2016), pp. 250–256. doi:10.1016/j.msea.2016.07.074.
  • X. Li, J. Li, W. Ding, S. Zhao, and J. Chen, Stress relaxation in tensile deformation of 304 stainless steel, J. Mater. Eng. Perform. (2017), pp. 1–6. doi:10.1007/s11665-016-2496-3.
  • ASTM, ASTM E328-13: Standard test methods for stress relaxation tests for materials and structures, 2013. doi:10.1520/E0328.
  • O. Majidi, F. Barlat, and M.G. Lee, Effect of slide motion on springback in 2-D draw bending for AHSS, Int. J. Mater. Form. 9 (2015), pp. 313–326. doi:10.1007/s12289-014-1214-7.
  • L. Xiao and J.L. Bai, Stress relaxation properties and microscopic deformation structure, Mater. Sci. Eng. A. 244 (1998), pp. 250–256.10.1016/S0921-5093(97)00688-6
  • M.S. Mohebbi, A. Akbarzadeh, Y.-O. Yoon, and S.-K. Kim, Stress relaxation and flow behavior of ultrafine grained AA 1050, Mech. Mater. 89(2015), pp. 23–34. doi:10.1016/j.mechmat.2015.06.001.
  • P. Spätig, J. Bonneville, and J.-L. Martin, A new method for activation volume measurements: application to Ni3(Al, Hf), Mater. Sci. Eng. A. 167 (1993), pp. 73–79. doi:10.1016/0921-5093(93)90339-G.
  • K. Okazaki, Y. Aono, and M. Kagawa, Mobile dislocations during stress relaxation in an Fe-0.056 at. % Ti alloy, Acta Metall. 24 (1976), pp. 1121–1130.10.1016/0001-6160(76)90029-8
  • O. Majidi, F. Barlat, Y.P. Korkolis, J. Fu, and M.-G. Lee, Thermal effects on the enhanced ductility in non-monotonic uniaxial tension of DP780 steel sheet, Met. Mater. Int. 22 (2016), pp. 968–973. doi:10.1007/s12540-016-6210-7.
  • T. Hasegawa, T. Yakou, M. Shimizu, and S. Karashima, The effect of deformation temperature on Bauschinger effect in polycrystalline aluminium, Trans. JIM. 17 (1976), pp. 414–418.10.2320/matertrans1960.17.414
  • Y. Strauven and E. Aernoudt, Directional strain softening, Acta Metall. 35 (1987), pp. 1029–1036.10.1016/0001-6160(87)90050-2
  • M.E. Kassner, P. Geantil, L.E. Levine, and B.C. Larson, Backstress, the Bauschinger effect and cyclic deformation, Mater. Sci. Forum. 604–605 (2009), pp. 39–51. doi:10.4028/www.scientific.net/MSF.604-605.39.
  • L.M. Brown, Orowan's explanation of the Bauschinger effect, Scr. Metall. 11 (1977), pp. 127–131. doi:10.1016/0036-9748(77)90291-5.
  • J. Hu, B. Chen, D.J. Smith, P.E.J. Flewitt, and A.C.F. Cocks, On the evaluation of the Bauschinger effect in an austenitic stainless steel – The role of multi-scale residual stresses, Int. J. Plast. 84 (2016), pp. 203–223. doi:10.1016/j.ijplas.2016.05.009.
  • Y. Wang, Y. Tomota, S. Harjo, W. Gong, and T. Ohmura, In-situ neutron diffraction during tension-compression cyclic deformation of a pearlite steel, Mater. Sci. Eng. A. 676 (2016), pp. 522–530. doi:10.1016/j.msea.2016.08.122.
  • A.A. Saleh, B. Clausen, D.W. Brown, E.V. Pereloma, C.H.J. Davies, C.N. Tomé, and A.A. Gazder, On the feasibility of partial slip reversal and de-twinning during the cyclic loading of TWIP steel, Mater. Lett. 182 (2016), pp. 294–297. doi:10.1016/j.matlet.2016.07.005.
  • J.T.T. Barnby, C.J.J. Flavell, A.S.S. Nadkarni, and Y.W.W. Shi, Void nucleation and growth during tensile deformation in steel, in Fract, Vol. 84, New Delhi, 1984, pp. 1287–1294. doi:10.1016/B978-1-4832-8440-8.50115-0.
  • A. Das and S. Tarafder, Geometry of dimples and its correlation with mechanical properties in austenitic stainless steel, Scr. Mater. 59 (2008), pp. 1014–1017. doi:10.1016/j.scriptamat.2008.07.012.
  • A. Das and S. Tarafder, Experimental investigation on martensitic transformation and fracture morphologies of austenitic stainless steel, Int. J. Plast. 25 (2009), pp. 2222–2247. doi:10.1016/j.ijplas.2009.03.003.
  • A. Das, Martensite–void interaction, Scr. Mater. 68 (2013), pp. 514–517. doi:10.1016/j.scriptamat.2012.11.039.
  • J.P. Bandstra, D.M. Goto, and D.A. Koss, Ductile failure as a result of a void-sheet instability: Experiment and computational modeling, Mater. Sci. Eng. A. 249 (1998), pp. 46–54. doi:10.1016/S0921-5093(98)00562-0.
  • T.B. Cox and J.R.J. Low, An investigation of the plastic fracture of AISI 4340 and 18 Nickel-200 grade maraging steels, Metall. Trans. B. 5 (1974), pp. 1457–1470. doi:10.1007/BF02646633.
  • M.J. Haynes and R.P. Gangloff, Temperature-dependent void-sheet fracture in Al-Cu-Mg-Ag-Zr, Metall. Mater. Trans. A. 29 (1998), pp. 1599–1613.10.1007/s11661-998-0084-3
  • J.P. Bandstra, D.A. Koss, A. Geltmacher, P. Matic, and R.K. Everett, Modeling void coalescence during ductile fracture of a steel, Mater. Sci. Eng. A. 366 (2004), pp. 269–281. doi:10.1016/j.msea.2003.08.018.
  • J. Arndt, H. Majedi, and W. Dahl, Influence of strain history on ductile failure of steel, J. Phys. III. 6 (1996), pp. C6-23–C6-32. doi:10.1051/jp4:1996603.
  • T.B. Stoughton and J.W. Yoon, Path independent forming limits in strain and stress spaces, Int. J. Solids Struct. 49 (2012), pp. 3616–3625. doi:10.1016/j.ijsolstr.2012.08.004.
  • S. Dhara, S. Basak, S.K. Panda, S. Hazra, B. Shollock, and R. Dashwood, Formability analysis of pre-strained AA5754-O sheet metal using Yld96 plasticity theory: Role of amount and direction of uni-axial pre-strain, J. Manuf. Process. 24 (2016), pp. 270–282. doi:10.1016/j.jmapro.2016.09.014.
  • M.M. Chaudhri, Subsurface strain distribution around vickers hardness indentations in annealed polycrystalling copper, Acta Metall. 46 (1998), pp. 3047–3056.
  • G. Srikant, N. Chollacoop, and U. Ramamurty, Plastic strain distribution underneath a Vickers Indenter: Role of yield strength and work hardening exponent, Acta Mater. 54 (2006), pp. 5171–5178doi:10.1016/j.actamat.2006.06.032.
  • ASTM, ASTM E8/E8 M - 15a: Standard test methods for tension testing of metallic materials, 2015. doi:10.1520/E0008_E0008M-15A.
  • W.C. Oliver and J.B. Pethica, Method for continuous determination of the elastic stiffness of contact between two bodies, US4848141 A, 1989.
  • W.C. Oliver and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load displacement sensing indentation experiments, J. Mater. Res. 7 (1992), pp. 1564–1583.10.1557/JMR.1992.1564
  • K. Dutta, S. Sivaprasad, S. Tarafder, and K.K. Ray, Influence of asymmetric cyclic loading on substructure formation and ratcheting fatigue behaviour of AISI 304LN stainless steel, Mater. Sci. Eng. A. 527 (2010), pp. 7571–7579. doi:10.1016/j.msea.2010.07.107.
  • J.Y. Kim, S.K. Kang, J.R. Greer, and D. Kwon, Evaluating plastic flow properties by characterizing indentation size effect using a sharp indenter, Acta Mater. 56 (2008), pp. 3338–3343. doi:10.1016/j.actamat.2008.02.049.
  • G. Cheng, F. Zhang, A. Ruimi, D.P. Field, and X. Sun, Quantifying the effects of tempering on individual phase properties of DP980 steel with nanoindentation, Mater. Sci. Eng. A. 667 (2016), pp. 240–249. doi:10.1016/j.msea.2016.05.011.
  • V.I. Dotsenko, Stress relaxation in crystals, Phys. Status Solidi. 93 (1979), pp. 11–43. doi:10.1002/pssb.2220930102.
  • L. Lu, T. Zhu, Y. Shen, M. Dao, K. Lu, and S. Suresh, Stress relaxation and the structure size-dependence of plastic deformation in nanotwinned copper, Acta Mater. 57 (2009), pp. 5165–5173. doi:10.1016/j.actamat.2009.07.018.
  • T.Y. Tsui, W.C. Oliver, and G.M. Pharr, Influences of stress on the measurement of mechanical properties using nanoindentation: Part I. Experimental studies in an aluminum alloy, J. Mater. Res. 11 (1996), pp. 752–759.10.1557/JMR.1996.0091
  • A. Bolshakov, W.C. Oliver, G.M. Pharr, T.Y. Tsui, W.C. Oliver, G.M. Pharr, W.C. Oliver, G.M. Pharr, I.N. Sneddon, F.J. Lockett, T.A. Laursen, and J.C. Simo, Influences of stress on the measurement of mechanical properties using nanoindentation: Part II. Finite element simulations, J. Mater. Res. 11 (1996), pp. 760–768. doi:10.1557/JMR.1996.0092.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.