87
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Insignificant influence of the matrix on the melting of ice confined in decorated mesoporous silica

, &
Pages 237-249 | Received 25 Oct 2016, Accepted 31 Oct 2017, Published online: 13 Nov 2017

References

  • P. Buffat and J.-P. Borel, Size effect on the melting of gold particles, Phys. Rev. A 13 (1976), pp. 2287–2298.10.1103/PhysRevA.13.2287
  • G.E. Begtrup, K.G. Ray, B.M. Kessler, T.D. Yuzvinsky, H. Garcia, and A. Zettl, Probing nanoscale solids at thermal extremes, Phys. Rev. Lett. 99 (2007), pp. 155901-1–155901-4. Article No.155901.
  • Q.S. Mei and K. Lu, Melting and superheating of crystalline solids: From bulk to nanocrystals, Prog. Mater. Sci. 52 (2007), pp. 1175–1262.10.1016/j.pmatsci.2007.01.001
  • K. Chattopadhyay and R. Goswami, Melting and superheating of metals and alloys, Prog. Mater. Sci. 42 (1997), pp. 287–300.10.1016/S0079-6425(97)00030-3
  • M. Alcoutlabi and G.B. McKenna, Effects of confinement on material behavior at the nanometre size scale, J. Phys.: Condens. Matter 17 (2005), pp. R461–R524.
  • H.W. Sheng, K. Lu, and E. Ma, Melting and freezing behavior of embedded nanoparticles in ball-milled Al-10wt%M (M = In, Sn, Bi, Cd, Pb) mixtures, Acta Mater. 46 (1998), pp. 5195–5205.10.1016/S1359-6454(98)00108-6
  • P. Ding, J. Ma, H. Cao, Y. Liu, L.W. Wang, and J. Li, Melting of iron nanoparticles embedded in silica prepared by mechanical milling, Mater. Sci. Eng. B 178 (2013), pp. 930–936.10.1016/j.mseb.2013.05.006
  • P. Ding, H.F. Hou, S.X. Pu, H. Cao, L.W. Wang, and J. Li, Mechanochemical synthesis for studying the melting of metallic nanoparticles: A case study of copper, Philos. Mag. Lett. 95 (2015), pp. 14–20.10.1080/09500839.2014.995738
  • G. Dosseh, Y. Xia, and C. Alba-Simionesco, Cyclohexane and benzene confined in MCM-41 and SBA-15: confinement effects on freezing and melting, J. Phys. Chem. B 107 (2003), pp. 6445–6453.10.1021/jp034003 k
  • J. Deschamps, F. Audonnet, N. Brodie-Linder, M. Schoeffel, and C. Alba-Simionesco, A thermodynamic limit of the melting/freezing processes of water under strongly hydrophobic nanoscopic confinement, Phys. Chem. Chem. Phys. 12 (2010), pp. 1440–1443.10.1039/B920816 J
  • J. Jelassi, H.L. Castricum, M.-C. Bellissent-Funel, J. Dore, J.B.W. Webber, and R. Sridi-Dorbez, Studies of water and ice in hydrophilic and hydrophobic mesoporous silicas: Pore characterisation and phase transformations, Phys. Chem. Chem. Phys. 12 (2010), pp. 2838–2849.10.1039/b908400b
  • E.B. Moore, J.T. Allen, and V. Molinero, Liquid-ice coexistence below the melting temperature for water confined in hydrophilic and hydrophobic nanopores, J. Phys. Chem. C 116 (2012), pp. 7507–7514.10.1021/jp3012409
  • Y.L. Lu, Y. Liu, Y.B. Xu, L.W. Wang, and J. Li, Size-dependent melting of ice in mesoporous silica, Philos. Mag. 93 (2013), pp. 1827–1842.10.1080/14786435.2012.760059
  • D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, and G.D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science 279 (1998), pp. 548–552.10.1126/science.279.5350.548
  • F. Bernardoni and A.Y. Fadeev, Adsorption and wetting characterization of hydrophobic SBA-15 silicas, J. Colloid Interf. Sci. 356 (2011), pp. 690–698.10.1016/j.jcis.2011.01.033
  • J.A. Howarter and J.P. Youngblood, Optimization of silica silanization by 3-aminopropyltriethoxysilane, Langmuir 22 (2006), pp. 11142–11147.10.1021/la061240 g
  • S.R. Wasserman, Y.-T. Tao, and G.M. Whitesides, Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkyltrichlorosilanes on silicon substrates, Langmuir 5 (1989), pp. 1074–1087.10.1021/la00088a035
  • E. Nowak, G. Combes, E.H. Stitt, and A.W. Pacek, A comparison of contact angle measurement techniques applied to highly porous catalyst supports, Powder Technol. 233 (2013), pp. 52–64.10.1016/j.powtec.2012.08.032
  • B. Neirinck, J. Van Deursen, O.V. der Biest, and J. Vleugels, Wettability assessment of submicrometer alumina powder using a modified washburn method, J. Am. Ceram. Soc. 93 (2010), pp. 2515–2518.10.1111/jace.2010.93.issue-9
  • J. Feng, G.H. Xu, Y. An, and X. Zeng, Construction of the homogeneously mixed SAM composed of octyltriethoxysilane and octadecyltrichlorosilane by taking advantage of the molecular steric restriction, Colloid. Surface. A 316 (2008), pp. 194–201.10.1016/j.colsurfa.2007.09.013
  • M. Mezger, H. Reichert, S. Schöder, J. Okasinski, H. Schröder, H. Dosch, D. Palms, J. Ralston, and V. Honkimäki, High-resolution in situ X-ray study of the hydrophobic gap at the water-octadecyl-trichlorosilane interface, Proc. Natl. Acad. Sci. USA 103 (2006), pp. 18401–18404.10.1073/pnas.0608827103
  • A. Hasan and L.M. Pandey, Kinetic studies of attachment and re-orientation of octyltriethoxysilane for formation of self-assembled monolayer on a silica substrate, Mater. Sci. Eng. C 68 (2016), pp. 423–429.10.1016/j.msec.2016.06.003
  • L.T. Zhuravlev, The surface chemistry of amorphous silica. Zhuravlev model, Colloid. Surf. A 173 (2000), pp. 1–38.10.1016/S0927-7757(00)00556-2
  • S. Iglauer, A. Salamah, M. Sarmadivaleh, K. Liu, and C. Phan, Contamination of silica surfaces: Impact on water-CO2-quartz and glass contact angle measurements, Int. J. Greenhouse Gas Control 22 (2014), pp. 325–328.10.1016/j.ijggc.2014.01.006
  • L. Giraud, R. Nadarajah, Y. Matar, G. Bazin, J. Sun, X.X. Zhu, and S. Giasson, Amino-functionalized monolayers covalently grafted to silica-based substrates as a robust primer anchorage in aqueous media, Appl. Surf. Sci. 370 (2016), pp. 476–485.10.1016/j.apsusc.2016.02.141
  • L.W. Wang, Q. Wang, C.X. Li, X.J. Niu, G. Sun, and K.Q. Lu, Layering in water adsorption and desorption on porous Vycor observed by dielectric measurements, Phys. Rev. B 76 (2007), pp. 155437-1–155437-5. Article No. 155437.
  • L.M. Skinner and J.R. Sambles, The Kelvin equation – a review, J. Aero. Sci. 3 (1972), pp. 199–210.10.1016/0021-8502(72)90158-9
  • R.J. Barlow, Statistics: A Guide to the Use of Statistical Methods in the Physical Sciences, John Wiley & Sons, Chichester, 1989.
  • C. Alba-Simionesco, G. Dosseh, E. Dumont, B. Frick, B. Geil, D. Morineau, V. Teboul, and Y. Xia, Confinement of molecular liquids: Consequences on thermodynamic, static and dynamical properties of benzene and toluene, Eur. Phys. J. E – Soft Matter 12 (2003), pp. 19–28.10.1140/epje/i2003-10055-1
  • C.L. Jackson and G.B. McKenna, The melting behavior of organic materials confined in porous solids, J. Chem. Phys. 93 (1990), pp. 9002–9011.10.1063/1.459240
  • M. Kruk, M. Jaroniec, and A. Sayari, Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements, Langmuir 13 (1997), pp. 6267–6273.10.1021/la970776 m
  • M. Schoeffel, N. Brodie-Linder, F. Audonnet, and C. Alba-Simionesco, Wall thickness determination of hydrophobically functionalized MCM-41 materials, J. Mater. Chem. 22 (2012), pp. 557–567.10.1039/C1JM11578B
  • A. Watanabe, T. Iiyama, and K. Kaneko, Melting temperature elevation of benzene confined in graphitic micropores, Chem. Phys. Lett. 305 (1999), pp. 71–74.10.1016/S0009-2614(99)00362-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.