259
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Bounds on size-dependent behaviour of composites

, & ORCID Icon
Pages 437-463 | Received 03 Aug 2017, Accepted 21 Nov 2017, Published online: 04 Dec 2017

References

  • K. Knowles and D. Smith, The application of surface dislocation theory to the f.c.c.-b.c.c. interface, Acta Crystallogr. A 38 (1982), pp. 34–40.
  • P. Sharma and S. Ganti, Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies, J. Appl. Mech. 71 (2004), pp. 663–671.
  • R. Dingreville, J. Qu, and M. Cherkaoui, Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films, J. Mech. Phys. Solids 53 (2005), pp. 1827–1854.
  • W. Gao, S. Yu, and G. Huang, Finite element characterization of the size-dependent mechanical behaviour in nanosystems, Nanotechnology 17 (2006), pp. 1118–1122.
  • H. Park and V. Laohom, Surface composition effects on martensitic phase transformations in nickel aluminium nanowires, Philos. Mag. 87 (2007), pp. 2159–2168.
  • S. Mogilevskaya, S. Crouch, and H. Stolarski, Multiple interacting circular nano-inhomogeneities with surface/interface effects, J. Mech. Phys. Solids 56 (2008), pp. 2298–2327.
  • Y. Cheng and M. Verbrugge, The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles, J. Appl. Phys. 104 (2008), p. 083521.
  • J. Yvonnet, H. Quang, and Q.C. He, An XFEM/level set approach to modelling surface/interface effects and to computing the size-dependent effective properties of nanocomposites, Comput. Mech. 42 (2008), pp. 119–131.
  • Z. Wang, Y. Zhao, and Z. Huang, The effects of surface tension on the elastic properties of nano structures, Int. J. Eng. Sci. 48 (2010), pp. 140–150.
  • R. Ansari and S. Sahmani, Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories, Int. J. Eng. Sci. 49 (2011), pp. 1244–1255.
  • H. Altenbach and V. Eremeyev, On the shell theory on the nanoscale with surface stresses, Int. J. Eng. Sci. 49 (2011), pp. 1294–1301.
  • G. Chatzigeorgiou, A. Javili, and P. Steinmann, Interface properties influence the effective dielectric constant of composites, Philos. Mag. 95 (2015), pp. 3402–3412.
  • N. Cordero, S. Forest, and E. Busso, Second strain gradient elasticity of nano-objects, J. Mech. Phys. Solids 97 (2016), pp. 92–124.
  • G. Chatzigeorgiou, F. Meraghni, and A. Javili, Generalized interfacial energy and size effects in composites, J. Mech. Phys. Solids 106 (2017), pp. 257–282.
  • K. Kiani, Exact postbuckling analysis of highly stretchable-surface energetic-elastic nanowires with various ends’ conditions, Int. J. Mech. Sci. 124–125 (2017), pp. 242–252.
  • H. Duan, J. Wang, and B. Karihaloo, Theory of elasticity at the nanoscale, Adv. Appl. Math. 42 (2009), pp. 1–68.
  • A. Javili, A. McBride, and P. Steinmann, Thermomechanics of solids with lower-dimensional energetics: On the importance of surface, interface, and curve structures at the nanoscale. a unifying review, Appl. Mech. Rev. 65 (2013), p. 010802.
  • G. Moeckel, Thermodynamics of an interface, Arch. Ration. Mech. Anal. 57 (1975), pp. 255–280.
  • A. Murdoch, A thermodynamical theory of elastic material interfaces, Q. J. Mech. Appl. Math. 29 (1976), pp. 245–275.
  • F. Dell’isola and A. Romano, On the derivation of thermomechanical balance equations for continuous systems with a nonmaterial interface, Int. J. Eng. Sci. 25 (1987), pp. 1459–1468.
  • E. Fried and M. Gurtin, Thermomechanics of the interface between a body and its environment, Continuum Mech. Thermodyn. 19 (2007), pp. 253–271.
  • A. Javili, N. Ottosen, M. Ristinmaa, and J. Mosler, Aspects of interface elasticity theory, Math. Mech. Solids (2017). doi: 10.1177/1081286517699041.
  • M. Gurtin and A. Murdoch, A continuum theory of elastic material surfaces, Arch. Ration. Mech. Anal. 57 (1975), pp. 291–323.
  • P. Steinmann, On boundary potential energies in deformational and configurational mechanics, J. Mech. Phys. Solids 59 (2008), pp. 772–800.
  • T. Chen, M. Chiu, and C. Weng, Derivation of the generalized young-laplace equation of curved interfaces in nanoscaled solids, J. Appl. Phys. 100 (2006), p. 074308.
  • K. Park and G. Paulino, Cohesive zone models: A critical review of traction-separation relationships across fracture surfaces, Appl. Mech. Rev. 64 (2013), p. 060802.
  • R. Dingreville, A. Hallil, and S. Berbenni, From coherent to incoherent mismatched interfaces: A generalized continuum formulation of surface stresses, J. Mech. Phys. Solids 72 (2014), pp. 40–60.
  • A. Javili, Variational formulation of generalized interfaces for finite deformation elasticity, Math. Mech. Solids (2017). doi: 10.1177/1081286517719938.
  • D. Steigmann and R. Ogden, Plane deformations of elastic solids with intrinsic boundary elasticity, Proc. Royal Soc. A 453 (1997), pp. 853–877.
  • D. Steigmann and R. Ogden, Elastic surface-substrate interactions, Proc. Royal Soc. A 455 (1999), pp. 437–474.
  • P. Chhapadia, P. Mohammadi, and P. Sharma, Curvature-dependent surface energy and implications for nanostructures, J. Mech. Phys. Solids 59 (2011), pp. 2103–2115.
  • X. Gao, Z. Huang, J. Qu, and D. Fang, A curvature-dependent interfacial energy-based interface stress theory and its applications to nano-structured materials: (i) general theory, J. Mech. Phys. Solids 66 (2014), pp. 59–77.
  • P. Kanouté, D. Boso, J. Chaboche, and B. Schrefler, Multiscale methods for composites: A review, Arch. Comput. Methods Eng. 16 (2009), pp. 31–75.
  • N. Charalambakis, Homogenization techniques and micromechanics. A survey and perspectives, Appl. Mech. Rev. 63 (2010), p. 030803.
  • S. Saeb, P. Steinmann, and A. Javili, Aspects of computational homogenization at finite deformations: A unifying review from reuss’ to voigt’s bound, Appl. Mech. Rev. 68 (2016), p. 050801.
  • K. Matouš, M. Geers, V. Kouznetsova, and A. Gillman, A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials, J. Comput. Phys. 330 (2017), pp. 192–220.
  • C. Miehe and A. Koch, Computational micro-to-macro transitions of discretized microstructures undergoing small strains, Arch. Appl. Mech. 72 (2002), pp. 300–317.
  • P. Guidault, O. Allix, L. Champaney, and J. Navarro, A two-scale approach with homogenization for the computation of cracked structures, Comput. Struct. 85 (2007), pp. 1360–1371.
  • M. Hain and P. Wriggers, Computational homogenization of micro-structural damage due to frost in hardened cement paste, Finite Elem. Anal. Des. 44 (2008), pp. 233–244.
  • H. Inglis, P. Geubelle, and K. Matouš, Boundary condition effects on multiscale analysis of damage localization, Philos. Mag. 88 (2008), pp. 2373–2397.
  • \.{I}. Temizer and P. Wriggers, On the computation of the macroscopic tangent for multiscale volumetric homogenization problems, Comput. Methods in Appl. Mech. Eng. 198 (2008), pp. 495–510.
  • I. Özdemir, W. Brekelmans, and M. Geers, FE2 computational homogenization for the thermo-mechanical analysis of heterogeneous solids, Comput. Methods Appl. Mech. Eng. 198 (2008), pp. 602–613.
  • M. Geers, V. Kouznetsova, and W. Brekelmans, Multi-scale computational homogenization: Trends and challenges, J. Comput. Appl. Math. 234 (2010), pp. 2175–2182.
  • K. Terada, M. Kurumatani, T. Ushida, and N. Kikuchi, A method of two-scale thermo-mechanical analysis for porous solids with micro-scale heat transfer, Comput. Mech. 46 (2010), pp. 269–285.
  • F. Larsson, K. Runesson, S. Saroukhani, and R. Vafadari, Computational homogenization based on a weak format of micro-periodicity for RVE-problems, Comput. Methods in Appl. Mech. Eng. 200 (2011), pp. 11–26.
  • E. Coenen, V. Kouznetsova, E. Bosco, and M. Geers, A multi-scale approach to bridge microscale damage and macroscale failure: a nested computational homogenization-localization framework, Int. J. Fract. 178 (2012), pp. 157–178.
  • D. Kochmann and G. Venturini, Homogenized mechanical properties of auxetic composite materials in finite-strain elasticity, Smart Mater. Struct. 22 (2013), p. 084004.
  • A. Javili, G. Chatzigeorgiou, and P. Steinmann, Computational homogenization in magneto-mechanics, Int. J. Solids Struct. 50 (2013), pp. 4197–4216.
  • D. Balzani, L. Scheunemann, D. Brands, and J. Schröder, Construction of two- and three-dimensional statistically similar RVEs for coupled micro-macro simulations, Comput. Mech. 54 (2014), pp. 1269–1284.
  • G. Chatzigeorgiou, A. Javili, and P. Steinmann, Unified magnetomechanical homogenization framework with application to magnetorheological elastomers, Math. Mech. Solids 19 (2014), pp. 193–211.
  • E. Bosco, V. Kouznetsova, and M. Geers, Multi-scale computational homogenization-localization for propagating discontinuities using X-FEM, Int. J. Numer. Methods Eng. 102 (2015), pp. 496–527.
  • Y. Cong, S. Nezamabadi, H. Zahrouni, and J. Yvonnet, Multiscale computational homogenization of heterogeneous shells at small strains with extensions to finite displacements and buckling, Int. J. Numer. Methods Eng. 104 (2015), pp. 235–259.
  • C. Miehe, J. Schröder, and J. Schotte, Computational homogenization analysis in finite plasticity Simulation of texture development in polycrystalline materials, Comput. Methods in Appl. Mech. Eng. 171 (1999), pp. 387–418.
  • F. Feyel and J.L. Chaboche, FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials, Comput. Methods in Appl. Mech. Eng. 183 (2000), pp. 309–330.
  • V. Kouznetsova, W. Brekelmans, and F. Baaijens, An approach to micro-macro modeling of heterogeneous materials, Comput. Mech. 27 (2001), pp. 37–48.
  • K. Terada, I. Saiki, K. Matsui, and Y. Yamakawa, Two-scale kinematics and linearization for simultaneous two-scale analysis of periodic heterogeneous solids at finite strain, Comput. Methods Appl. Mech. Eng. 192 (2003), pp. 3531–3563.
  • W. Drugan and J. Willis, A micromechanics-based non local constitutive equation and estimates of representative volume element size for elastic composites, J. Mech. Phys. Solids 44 (1996), pp. 497–524.
  • T. Kanit, S. Forest, I. Galliet, V. Mounoury, and D. Jeulin, Determination of the size of the representative volume element for random composites: statistical and numerical approach, Int. J. Solids Struct. 40 (2003), pp. 3647–3679.
  • M. Ostoja-Starzewski, Material spatial randomness: From statistical to representative volume element, Probab. Eng. Mech. 21 (2006), pp. 112–132.
  • A. Javili, P. Steinmann, and J. Mosler, Micro-to-macro transition accounting for general imperfect interfaces, Comput. Methods in Appl. Mech. Eng. 317 (2017), pp. 274–317.
  • D. Davydov, A. Javili, and P. Steinmann, On molecular statics and surface-enhanced continuum modeling of nano-structures, Comput. Mater. Sci. 69 (2013), pp. 510–519.
  • H. Park, E. Karpov, K. Wing, and P. Klein, The bridging scale for two-dimensional atomistic/continuum coupling, Philos. Mag. 85 (2005), pp. 79–113.
  • H. Park, P. Klein, and G. Wagner, A surface Cauchy-Born model for nanoscale materials, Int. J. Numer. Methods Eng. 68 (2006), pp. 1072–1095.
  • V. Kouznetsova, M. Geers, and W. Brekelmans, Multi-scale second-order computational homogenization of multi-phase materials: A nested finite element solution strategy, Comput. Methods Appl. Mech. Eng. 193 (2004), pp. 5525–5550.
  • R. Hill, On constitutive macro-variables for heterogeneous solids at finite strain, Proc. Royal Soc. A 326 (1972), pp. 131–147.
  • G. Chatzigeorgiou, A. Javili, and P. Steinmann, Multiscale modelling for composites with energetic interface at the micro- or nanoscale, Math. Mech. Solids 20 (2013), pp. 1130–1145.
  • S. Hollister and N. Kikuchi, A comparison of homogenization and standard mechanic analyses for periodic porous composites, Comput. Mech. 10 (1992), pp. 73–95.
  • M. Hori and S. Nemat-Nasser, On two micromechanics theories for determining micro-macro relations in heterogeneous solids, Mech. Mater. 31 (1999), pp. 667–682.
  • D. Perić and E. de Souza, Neto, R.A. Feijóo, M. Partovi, and A. Carneiro Molina, On micro-to-macro transitions for multi-scale analysis of non-linear heterogeneous materials: unified variational basis and finite element implementation, Int. J. Numer. Methods Eng. 87 (2011), pp. 149–170.
  • L. Kaczmarczyk, C. Pearce, and N. Bićanić, Scale transition and enforcement of RVE boundary conditions in second-order computational homogenization, Int. J. Numer. Methods Eng. 74 (2008), pp. 506–522.
  • M. Jiang, K. Alzebdeh, I. Jasiuk, and M. Ostoja-Starzewski, Scale and boundary conditions effects in elastic properties of random composites, Acta Mech. 148 (2001), pp. 63–78.
  • \.{I}. Temizer and T.I. Zohdi, A numerical method for homogenization in non-linear elasticity, Comput. Mech. 40 (2007), pp. 281–298.
  • A. Javili, A. McBride, J. Mergheim, P. Steinmann, and U. Schmidt, Micro-to-macro transitions for continua with surface structure at the microscale, Int. J. Solids Struct. 50 (2013), pp. 2561–2572.
  • A. Javili, G. Chatzigeorgiou, A. McBride, P. Steinmann, and C. Linder, Computational homogenization of nano-materials accounting for size effects via surface elasticity, GAMM-Mitt. 38 (2015), pp. 285–312.
  • \.{I}. Temizer and P. Wriggers, Homogenization in finite thermoelasticity, J. Mech. Phys. Solids 59 (2011), pp. 344–372.
  • C. Miehe, Computational micro-to-macro transitions for discretized micro-structures of heterogeneous materials at finite strains based on the minimization of averaged incremental energy, Comput. Methods in Appl. Mech. Eng. 192 (2003), pp. 559–591.
  • A. Javili, S. Saeb, and P. Steinmann, Aspects of implementing constant traction boundary conditions in computational homogenization via semi-dirichlet boundary conditions, Comput. Mech. 59 (2016), pp. 1–15.
  • A. Javili, A. McBride, P. Steinmann, and B. Reddy, A unified computational framework for bulk and surface elasticity theory: a curvilinear-coordinate-based finite element methodology, Comput. Mech. 54 (2014), pp. 745–762.
  • V. Shenoy, Atomistic calculations of elastic properties of metallic fcc crystal surfaces, Phys. Rev. B 71 (2005), p. 094104.
  • A. Javili, A. McBride, P. Steinmann, and B. Reddy, Relationships between the admissible range of surface material parameters and stability of linearly elastic bodies, Philos. Mag. 92 (2012), pp. 3540–3563.
  • Z. Hashin and B. Rosen, The elastic moduli of reinforced-reinforced materials, J. Appl. Mech. 31 (1964), pp. 223–232.
  • R. Christensen and K. Lo, Solution for effective shear properties in three phase sphere and cylinder models, J. Mech. Phys. Solids 27 (1979), pp. 315–330.
  • P. Sharma, S. Ganti, and N. Bhate, Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities, Appl. Phys. Lett. 82 (2003), pp. 535–537.
  • H. Duan, J. Wang, Z. Huang, and B. Karihaloo, Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress, J. Mech. Phys. Solids 53 (2005), pp. 1574–1596.
  • H. Duan, X. Yi, Z. Huang, and J. Wang, A unified scheme for prediction of effective moduli of multiphase composites with interface effects. Part I: Theoretical framework, Mech. Mater. 39 (2007), pp. 81–93.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.